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| Impacts of climate change

#Climate change' 1S costmg the world
more than $1.2 trillion annually
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Advanced NV buildings

Queens’ Building de Montfort
University
Short, Ford & Partners

Green building of the year 1995




Fluid mechanics challenge

Aerospace Meteorology

boundary conditions internal dynamics

Currently impossible to
compute the full equations
without approximation
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Boundary conditions
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Plumes — entrain fluid from surroundings
Volume flux increases with height

Temperature decreases with height
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Modelling options

« Simplified models
— Network models
— Integral models

* RANS

— Turbulence closure
 LES

— Adaptive grids

— Turbulence closure

 DNS
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Modelling a building in the lab

Dynamic similarity
When a flow occurs on a smaller scale the effects of friction become disproportionally

larger. The challenge for the experimentalist is to ensure that the balance between
inertia and friction remain the same as the scale is reduced

Inertia — friction balance is measured by
the Reynolds number

Re = —

v

OSBORNE REYNOLDS
Jfrom a Portrait by John Collier

U is a typical velocity scale

L is a typical length scale

v is the kinematic viscosity of the fluid
(friction per unit mass)
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Full to lab scale

gAr13/2
Re ~ p

v

In a typical model Lj,p ~ Q%Lbuz'ld so unless we change the properties of the fluid =

1

Rejgp ~ ﬁRebmd

»  Work with water — vygter & 1—101/02-,, — less friction
9

Provide buoyancy with salt rather than heat — since AT ~ 10K and T ~ 300K,
Ap — AT 1
p — T 30

Using salt épe ~ % — faster flow

®» So we recover a factor of 30 and Re ~ 300.000 and friction remains small
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Displacement ventilation

Single plume

Steady state consists of two uniform layers of different temperatures
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Displacement ventilation

Single plume

I+AT

Plume

At interface at height h the flow rate )
and the excess temperature AT of the

plume are related to the heat flux H by

O ~ 1/3] 5/3
® Upper layer has uniform d A ?
temperature equal to the . o
AT ~ H?Ph=5/3
temperature of the plume at the

interface
P  Ventilation flow rate is the vol-
ume flux in the plume at the in-

terface
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Displacement ventilation
I, H

T +AT
T
The pressure difference associated Across the lower opening A the
with the hot upper layer across the pressure difference is
upper opening Ay AT

Apr, = g—h
AT T
Apy = g—(H — h)

These pressure differences drive a ventilation flowrate () through the two openings

AT A L4 | U
g

Q=A" ); AT =
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Displacement ventilation

| ocal control

- T ,,-4 ,,-4 T
Q= A" \/gAT (H—h); A" L C
12 12
\/fl L + fl U

Upper opening much smaller than the lower opening: Ay << Ap,

AL A
‘4* — LAL
VA2 + A3
A A
A* = 222U A
A2
A2

Ventilation rate controlled by the size of the smaller opening
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Consequences

5/2
7 A
o 2
, H
-7

Denominator gets very small as the interface nears the ceiling h — H
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Advanced NV buildings

Queens’ Building de Montfort
University
Short, Ford & Partners

Green building of the year 1995




Queens’ Building de Montfort University

Salt bath model Interior

=r =
1

B

£
b

i

l.\-

UNIVERSITY OF
CAMBRIDGE



Modelling options

« Simplified models
— Network models
— Integral models

* RANS

— Turbulence closure
« LES

— Adaptive grids

— Turbulence closure

 DNS
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Wind-driven cross ventilation
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Turbulent closure
A

Normalized x-velocity, Vx/U,,
06 -04 -02 0 02 04 06 08

Carrilho da Graca, Daish & PFL 2015
Building and Environ. 89, 72-85

‘- =RNG k-epsilon
----58T k-omega
—Average

Normalized position across flow, y/H
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Comparison with zonal model

Jet velocity Recirculation velocity
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Modelling options

« Simplified models
— Network models
— Integral models

* RANS

— Turbulence closure
« LES

— Adaptive grids

— Turbulence closure

 DNS

B H UNIVERSITY OF
¢¥ CAMBRIDGE




Single plume with displacement
ventilation

6 X 6 x 3m room with 1.5kW heater
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Test room
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Wind-driven cross ventilation
side view

Air
Full scale

Water
Lab scale
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Wind-driven cross ventilation
top view

Air Water
Full scale Lab scale

Davies Wykes, Debay & PFL 2018
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Decay of mean concentration
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Modelling options
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Inclined duct experiment

N & o

po + Ap P0

<~
—> -

*W

- Exchange flow between two reservoirs
« Two-layer stratified shear flow with sustained forcing

- Simple configuration but rich range of nonlinear
behaviours

B ITNTVERSITY OF
Adrien Lefauve Linear stability and coherent structures in laboratory stratified turbulence
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3D structures

Lefauve, Partridge & PFL 2017
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3D structures

Lefauve, Partridge & PFL 2018



Challenges

* Single-sided ventilation

* People movement

* Connections to urban design

EE UNIVERSITY OF

Y - O

¢¥ CAMBRIDGE




Challenges

» Single-sided ventilation

* People movement

* Connections to urban design
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Single-sided ventilation

« Ventilation rate due to 1 or more openings in
same facade

 Dependence on wind angle and opening size and
position

Wind
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Wind tunnel tests

FID (concentration) sensors

Pressure sensors
around aperture
positions

5168-70_Floor01_03-1

2-story: approx 5:2:1, H=10cm
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Non-dimensional flow rate
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Pumping through openings in the lee
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Challenges

* Single-sided ventilation

* People movement

* Connections to urban design
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Walking through an air curtain

Jha, Frank & Linden 2017
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Challenges

* Single-sided ventilation

* People movement

* Connections to urban design
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MAGIC

Managing Air for Green Inner
Cities

The 0-0 Challenge:

Can we develop cities with no air

pollution and no heat-island effect by
20502

BH UNIVERSITY OF Imperial College
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About

Imagine a city with no air pollution or heat island...

— Current HVAC system is carbon intensive

We need to think differently...

— Natural ventilation in buildings

— Diluted air pollution levels

— Increased albedo

— Integrated green and blue spaces
— Public education and policy change
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MAGIC Fluid mechanics

Fluidity: Large Eddy Simulations with an adaptive mesh

Wind tunnel: study of test site 300m radius at 1:200 scale

Water flume: modelling indoor-outdoor exchange

Monitoring: indoor and outdoor monitoring of test site
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Test Site

Borough of Southwark

London ==
Bridge

Waterloo
station
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z/d

Neighboorhood scale
simulations

Comparison with wind tunnel experiment
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Sensor network

Sensor Network MAGIC
I - —_ Envisaging a world with greener cities
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Indoor Sensor Network Outdoor Sensor Network (Street, City)

= High temporal resolution and high spatial resolution
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Outdoor NO, on London Road
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 Street Canyon effect results in a higher concentration on westside road and a lower
concentration on the eastside road
« Statistical plots for comparison with models
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Outdoor monitoring
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Indoor CO, — Single-sided Ventilation
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CO2 highly
correlates to the
number of
occupants in the
room

CO2 reduction is
clear when the

window is open and
CO2 by the window
is close to outdoor

CO2 spatial
variation is observed



Indoor CO, Vertical Stratification
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Towards more physics

Thermal effect - Microclimate

* Main factor influencing the urban microclimate

Height z
Neutral BL

Laetitia Mottet
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Towards fast numerical tool
Non-Intrusive Reduced Order Model (NIROM)

« Ability of NIROM to reproduce the instantaneous velocity field

-

Dunhui Xiao

Velocity Magnitude Velocity Magnitude VeLCifY Magnitude

““““““ TSV, JUETRTIL JUUTSTRR. NESERRVIL I 2 - JUUTTEI. SVSTREER. - 2 4 6 8 10

Full model NIROM NIROM
96 basis function 382 basis function
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How

* What will this look like?
— Fully integrated suite of models
— Management tools

— Decision support tools
 Comprised of:

— Fully resolved air quality model =«

— Reduced order model

— Cost-benefit analysis
 MAGIC Circle: www.magic-air.uk
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Conclusions

« Simulating airflow in buildings is
critical to a sustainable future
* Direct numerical simulations remain
— unachievable at full scale
— difficult to match boundary conditions
* Approximate methods require
— Comparison with laboratory studies
— Comparison with field studies

* Many interesting challenges
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