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Abstract 

This paper demonstrates that the time series values obtained from measurements or dynamic simulation can be used 

to estimate the energy load curve, that this curve may be applied to calculate the energy consumption and that the 

free-running temperature is an equivalent form of the load curve. The main advantages of using the concept of free-

running temperature are that 1) the dynamic behavior may be described by steady-state concepts, 2) the whole range 

of building operation (heating, ventilation and cooling) is described by a single concept, and 3) the thermal behavior 

of the building, the comfort and the climate are decoupled. The mathematical formalism uses matrix notation. 
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1 Introduction 

Currently, energy performance of buildings is assessed by using two types of methods: steady-

state and dynamic. Steady-state approach is appropriate if the building operation and the 

efficiency of HVAC systems are constant, at least on intervals of time and/or outdoor 

temperature [1]. Dynamic analysis, which uses building thermal simulation, requires exhaustive 

information about the building construction and operation. The results are usually given in the 

form of time series. The current dynamic approach needs two important improvements in order 

to become a current practice: to reduce the amount of input data  [2] and to give more condensed 

information as results. 

A new paradigm for estimating the energy performance in the initial stages of design is 

based on  frequency distribution [3] which may be combined with qualitative reasoning [4]. The 

advantage of the frequency distribution over the time series is that the information contained is 

much richer. 
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Nomenclature 

q  heat flux, energy rate (W) 

s  complex variable, ωσ js +=  

( 1srad −⋅ ) 

F  frequency occurrences (-) 

K  thermal conductance (W/K) 

Q  energy (J or kWh) 

R  thermal resistance (K/W) 

T  temperature (K or °C) 

 

Vectors 

F  frequency occurrences (-) 

K  conductance (W/K) 

Q  energy (J or kWh) 

T  temperature (K or °C) 

 

Symbols 

×  matrix product 

∗  element by element array 

multiplication 

 

Superscript 

T  transpose 

Subscripts 

b  base 

c  cooling 

cd  conduction 

cl  lower comfort limit 

cu  upper comfort limit 

fc  free-cooling 

fr  free-running 

g  gains 

h  heat 

i  indoor 

l  total loss 

o  outdoor 

s  sun 

v  ventilation 

 

Diacritical marks 

~ transfer function  

– mean value 

 

Greek symbol 

δ   condition, { }1;0∈δ  

 

For example, the designer would be more interested in the frequency of occurrences and in the 

duration of the indoor temperature values larger than the upper comfort limit in a period of, lets 

say, 10 years, than in the time variation of the temperature during each day of a standard weather 

year. With this information, the design decisions become a choice of accepted risk with 

important economic and social benefits.  

Steady-state methods based on temperatures [5, 6] or on load (i.e. heating / cooling) curve 

[7] can be adapted to characterized the dynamic behavior by considering their frequency of 

occurrence or probability distributions [3]. The load curve and the temperatures were used 
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separately in analyzing the building performance [8, 9]. This paper demonstrates the equivalence 

between the load curve and the free-running temperature, which allows us to analyze the 

building in heating, ventilation, and cooling regimes by using a single concept. The advantage of 

this method consists in decoupling the three main factors that influence the energy consumption 

of the building: the thermal behavior of the building, the thermal comfort range and the climate.  

 

2 Energy calculation from load curve 

The heating load for a bin (i.e. an interval) of the outdoor temperature for a given operating 

mode of the HVAC system is 

)( boh TTKq −= , (1) 

where K , vcd KKK += , is the mean value of the thermal conductance and Tb is the outdoor 

temperature for which the heating load is zero, called the base temperature 

0=≡
hqob TT . (2) 

 

By using the equation (1), the sum of energy rate for heating in a bin around oT  is: 

 ∑ −⋅=⋅= )( bohh TTKFqFq , (3) 

where and the brackets    indicate the operation: 

 


 <

=
otherwise 0

0 if ff
f . (4) 

)0 ( <≡ ho qTFF  is the frequency of occurrences of the outdoor temperature in the considered 

bin, with the condition that the heating is needed. The energy consumption on the  

whole range of variation of the outdoor temperature is: 

 ∑ −∗×=
oT

bo
T

h Tq )(TKF , (5) 

T
okooo TTT ]...[ 21=T  is the vector which represents the centers of the bins of outdoor 

temperature, T
okoo TFTFTF ])(...)()([ 21=F  is the vector of frequencies of occurrences of 

outdoor temperature in the bins oT , and T
okoo TKTKTK ])(...)()([ 21=K  is the vector of 

mean global conductance values corresponding to the bins oT . The operator ×  represents the 
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matrix multiplication and the operator ∗  represents the array multiplication, i.e. the element-by-

element product of arrays: 

T
okokooooo TTKTTKTTK ])(...)()([ 2211 ⋅⋅⋅=∗ TK . (6) 

 

If the values of the vector K  are constant, then: 

oo KTTK =∗ , (7) 

and equation (5) becomes: 

 ∑ −×=
oT

bo
T

h TKq )(TF . (8) 
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Fig. 1  Energy load and free-running temperature for 
heating: a) Heating load; b) Free-running temperature 
obtained from heating load; c) Frequency of occurrences 
distribution of outdoor temperature.  
 

-10 0 10 20 30
-10

0

10

20

Q
[k

W
h]

(a)

-10 0 10 20 30
-20

0

20

40

60

T
[°C

]

(b)

-10 0 10 20 30
0

100

200

300

F
[o

cc
ur

en
ce

s]

T
o
[°C]

(c)

Qh 

Qch 

To 

Tcl 
Tcu 

Tfrh 

Tfrc 

Heating 

Free-cooling 

Cooling 

F
h
 

F
v
 

F
c
 

Ventilation 

 
Fig. 2 Energy load and free-running temperature for 
heating and cooling: a) Heating load; b) Free-running 
temperature obtained from heating load; c) Frequency of 
occurrences distribution of outdoor temperature.  
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Commonly, energy simulation software and energy meters in real buildings give energy 

consumption for heating over a sample time, t∆ , e.g. h1=∆t . Integrating the energy rate 

expressed by the equation (1), the energy consumption during the period t∆  is 

tTTKQ bo ∆−= )( , (9) 

where Q , K , and bT  are the mean values of the hourly energy consumption, overall thermal 

conductance and base temperature for the bin of the outdoor temperature oT .  The energy 

consumption for heating is then 

 ∑ ∆−×=
oT

bo
T tTKQ )(TF . (10) 

 

If the values of the vector K  are constant, i.e. the mean values of the total thermal conductance 

are constant for a bin of outdoor temperature and an operating mode of the HVAC system, then 

the global thermal conductance K  may be found from experimental data by regression.  

 

3 Experimental estimation of the load curve 

Representing the energy losses for heating, Q , as a function of the outdoor temperature will 

result in a cloud of data. Fig. 1 presents the results of a thermal simulation of a full air-

conditioned building. The linear regression model for this data cloud is: 

EbT1Q +×= ][ on , (11) 

where nT
n R∈= ]1,...,1[1 , the hourly energy consumption T

nQQQ ]...[ 21=Q  and the 

hourly mean outdoor temperature T
nTTT ]...[ 21=T  are the observations, and Tbb ][ 10=b  

is the unknown parameter vector. The vector T
nEEE ]...[ 21=E  models the scatter of data 

and the variation of vK  and cdK . The vector b  is found by ordinary or robust regression [13],  

QT1b \][ on=  (12) 

where \ is the regression operator.  

From equation (11) we obtain the global heat loss coefficient of the building, 

tbK ∆= /1  (13) 

and the base temperature, i.e. the outdoor temperature for which the heat load is zero: 

10 / bbTb −= . (14) 
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3.1 Conditions of application and limits of ordinary regression 

The assumptions made for linear regression are that the outdoor temperature, oT , has a normal 

distribution and that the heat load, Q , is a random variable of mean oQ T10 ββµ +=   and 

homogeneous variance 2σ . These conditions may be synthesized in [34]: 

 

The random variables Q  are independent 

of mean oQ T10 ββµ +=  

and variance 2σ  

(15) 

 

The conditions (15) imply that the residuals of the regressions should have a normal distribution 

of zero mean.  

Over a long period of time, the statistical distribution of the outdoor temperature, )(tTo , 

is normal (or Gaussian). If the building if fully air conditioned, if the internal gains (occupation) 

and the ventilation rates are independent random variables having a normal distribution, and if 

the indoor temperature is controlled within a narrow range, then the energy load (heating and 

cooling) has also a normal distribution. These conditions are not satisfied in real situations; for 

example, the building is not air-conditioned at a constant temperature for the whole range of the 

outdoor temperature. Consequently, the outdoor temperature which correspond to the heating 

period does not have a normal distribution.  

The heating load is, in a first approximation, a linear function of the random variable 

outdoor temperature, as indicated by the equation (11). The linear transformation will change the 

mean and the variance but not the form of the distribution.  When x  is vector of random values, 

 

xy

xy

T

b

ba

ba

σσ
µµ

=

+=
×=

  and

then 

][][ if x1y

 (16) 

 

where µ  and σ  represent the mean and the standard deviation of the indices variables. If we 

want to find the answer to the question what is the expected value of Q  as a function of oT , then 

we use the least mean square to estimate the coefficients of the equation: 
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T
TTo ba ][][ ×= T1Q  (17) 

as 

)()(

)()(

T
T

T

Q
T

T
Tb

µµ
µµ

−×−
−×−

=
TT

QT
 (18) 

and 

TQQT ba µµ −= . (19) 

 

An example of estimation of T
TTo ba ][][ ×= T1Q  for a real building is given in Fig. 4 (a): 

oTQ 47.143.22 +−= . (20) 

On the other hand, if we want to answer the question what is the outdoor temperature oT  

for which the building is in thermal balance for a given energy flow rate, Q , then we find out by 

regression the coefficients of the equation: 

T
QQo ba ][][ ×= Q1T  (21) 

as 

)()(

)()(

Q
T

Q

T
T

Q
Qb

µµ
µµ

−×−
−×−

=
QQ

TQ
 (22) 

 and 

QQTQ ba µµ −= . (23) 

An example of estimation of T
QQo ba ][][ ×= Q1T  for a real building is given in Fig. 4 (a): 

QTo 28.099.9 += . (24) 

The correlation coefficient of the regressions (17) and (21) is 

QTQT bbr
oo

⋅=2 . (25) 

 For the example shown in Fig. 4 (a), by using the values from (20) and (24), it results 

41.02 =QTo
r . This value shows a small correlation between data indicating low confidence in the 

model. Note that the model (17) will give good results for the estimation of energy consumption 

by using equation (10) for the data set on which it was calculated but the results will be much 

less precise when used with other sets of outdoor temperature. 
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3.2 Robust regression of heating load curve based on q-q plot 

A robust regression based on quantile – quantile plot is proposed to mitigate this problem. The 

discussion of this method is done on real data collected in a school building in La Rochelle, 

France, for a month during the heating season. The school is heated intermittently, with the 

daytime set-point of 20°C and the nighttime set-point of 15°C. The data set considered in this 

example is selected for daytime, from 10:00H to 17:00H. 

The points in a q-q plot represent quantiles of the data. Quantiles indicate the number of 

elements of a random variable that are in a given range. The k-th quantile, kP , is that value of the 

random variable x having N values, say kx , which corresponds to a cumulative frequency of 

nNk / . The quantile is called percentile for 100=n  [35]. The 25th and the 75th percentiles are 

called the first and the third quartiles, respectively, and the 50th percentile is called the median 

[34]. If the points in a q-q plot lie roughly on a line, then the distributions are the same, whether 

normal or not. 

A robust estimation of the linear relation between the outdoor temperature and the heat 

load may be done based on the central region of the q-q plot by considering data between the 1st 

and the 3rd quartile. If the two distributions are the same for this quantile range, then the 

coefficients of the model  

oba TQ +=  (26) 

are: 

oTQb σσ /=  (27) 

and 

QT ba
o

µµ −=  (28) 

which represents the principal component axis in Fig. 4. 

Equation (28) is a direct result of the fact that Q  is a function of the random variable oT  

and it is in accordance with the set of equations (16). In Fig. 4, the principal component axis (28) 

is located between the regression models (17) and (21). Fig. 4 (b) shows that the model (28) 

approximates the q-q plot in the central zone. 

It is known from physical considerations that the relation )( oTfQ =  is non linear for hot 

water heating systems equipped with radiators due to the nonlinearity of the heat transfer by 

convention and radiation: 

5.11  ,)( ≤≤−= nTTkSP n
ami  (29) 
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Fig. 3 Outdoor temperature and the heating load have partially the same statistical distribution. a) histogram b) 
quantile-quantile plot 
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Fig. 4. Regression models on a) scatter plot b) quantile-quantile plot 
 
 

where P  is the heat flux of the radiators, k  is the global transfer coefficient, S  is the total 

surface, aT  is the ambient temperature and mT  is the mean temperature of the hot water: 

2/)( rsm TTT +=  (30) 

where sT  and rT  are the supply and the return hot water temperature, respectively. The 

nonlinearity of the relation )( oTfQ =  may be modeled by considering a quadratic function of 

the type: 

2
222 oo TcTbaQ ++= . (31) 

For the same reasons as above, a robust estimation of the parameters of equation (31) can 

be done by using the data from the q-q plot between the 1st and the 3rd quartile. For the data set 

shown in Fig. 4, the model obtained is: 

Data 

Q = aT + bTT 

T = a  + b T 

Data 

Q = a1 + b1T 

Q = a  + b T + c T2 
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215.012.035.20 oo TTQ ++−= . (32) 

This model has a small slope for CTo °−= 5  which is the design temperature for heating in La 

Rochelle, France, and a higher slope for the base temperature of 12°C. 

When energy consumption is estimated by using equation (10), the ordinary regression, 

equations (17) - (19), gives relative errors of 0.5% for the data on which it was obtained and of 

about 5-10 % for different set of data. The q-q regressions, equations (26) and (31), give the 

same relative error of 2-4% for the data set on which it was obtained as well as on new data set. 

 

4 Relation between the free-running temperature and the load curve 

The heat gains from sun, occupants, lights, and so forth, gq , are equal to the total energy loss 

when the outdoor temperature is equal to the balance point, bT , for a given lower limit of the 

indoor comfort temperature, clT   [1]: 

)(* bclg T TKg −= . (33) 

The free-running temperature, frT , is the indoor temperature when no energy is supplied 

by the heating or cooling system and the air permeability of the building is kept at the winter 

value, i.e. the windows are closed [3]. In this case, the heat gains are: 

)(* ofrg TTKg −= . (34) 

From equations (33) and (34) it results that: 

 

boclfr T TTT −=− . (35) 

Expressed as a function of the free-running temperature, the heating load equation (1) becomes: 

)( clfrh TTKq −= . (36) 

From equation (36) we obtain the free-running temperature: 

qRT *+= clfr T . (37) 

With the notations used, the energy rate for heating, hq , is negative. For practical purposes, 

equation (37) may be expressed as a function of the energy consumption, hQ , during a time 

interval, t∆ : 

tT hclfr ∆+= /* QRT . (38) 
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Equation (38) provides the means of representing the free-running temperature as a function 

of the energy load. Fig. 1 (a) shows the scattered data of the energy consumption and the load 

curve obtained by regression, hQ . Fig. 1 (b) shows the equivalent of the panel (a) obtained by 

using the free-running temperatures calculated with equation (38). The last panel, Fig. 1 (c), 

shows the frequency distribution of the outdoor temperature. 

 

5 Energy performance evaluation by using the free-running temperature 

The free-running temperature may replace the load curve to estimate the energy performance of 

buildings. In addition, it may be used in energy estimating methods such as degree-day and bin 

methods or to assess the climatic suitability of HVAC solutions and the potential for cooling by 

ventilation [3, 4, 14].  

The load curves for heating and air conditioning are shown in Fig. 2 (a). The regression 

line hQ  represents the heating load. The regression line for cooling is more difficult to obtain 

due to data scattering produced mainly by the variable ventilation rates used for free-cooling 

[15]. Since the building is the same, it may be assumed that the cooling load is similar to the 

heating load with a difference introduced by the change of the base temperature equal to 

clcu TT − . Consequently, the cooling load obtained from heating load chQ  is parallel to the 

heating load, hQ , and biased so that it passes through the center (mean) of the data cloud. 

The free-running temperatures, obtained by using equation (38) for the regression line, 

are shown in Fig. 2 (b). Although mathematically equivalent to Fig. 2 (a), this is a condensed 

representation of the building performance during heating, ventilation and cooling. The 

conditions for heating, ventilation and cooling can be expressed as: 





≥
<

=
clfr

clfr

h TT

TT

 if

if

,0

  ,1

 
δ , (39) 

 



 <>

=
       ,0

 and   ,1

not if

if

  .

cuoclfr
v

TTTT
δ , (40) 

and 



 >

=
       ,0

  ,1

not if

if

  .

cufr
c

TT
δ . (41) 

The condition for free-cooling (cooling by ventilation) is a sub-domain of ventilation, 
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

 <>

=
       ,0

 and   ,1

not if

if

  .

cuocufr
fc

TTTT
δ . (42) 

These domains are shown in Fig. 5. The example data shown in Fig. 2 (b) reveals that the 

free-cooling potential is not fully used since there are many points plotted for mechanical 

cooling in the free-cooling domain.  
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Fig. 5 HVAC operating zones: 1) heating, 2) ventilation 3) free-cooling, 4) mechanical cooling. 

 
 

The frequency distributions of heating, hF , ventilation, vF , and cooling, cF , are shown in Fig. 2 

(c). They represent the number of occurrences of outdoor temperature that satisfy the conditions 

(39), (40), and (41). The free-running temperature, frT , the comfort range, clT  and cuT , and the 

frequency distributions, hF , vF , and cF , can be used in energy performance estimation methods 

such as the bin method [3, 14]. The frequency distribution of degree-hour in bins of outdoor 

temperature for heating is: 

)( frclhDHh TTFF −∗= , (43) 

for cooling is: 

)( cufrcDHc TTFF −∗= , (44) 

and for free-cooling is: 

)( cufrfcDHfc TTFF −∗= . (45) 

Multiplying the equations (43), (44), and (45) by K  we obtain the frequency distribution of 

energy consumption for heating and cooling and of the energy savings for cooling by using free-

cooling.  

The total energy for heating is: 
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)( frclhh KQ TTF −×= , (46) 

and for cooling is: 

)( cufrcc KQ TTF −×= . (47) 

The total energy saved for cooling by using ventilation is: 

)( cufrfcfc KQ TTF −×= . (48) 

 

6 Conclusions 

The load curve may be used in conjunction with the frequency distribution of the outdoor 

temperature to estimate the energy consumption of a building in different locations or in the 

same location but in different years. The errors introduced by using the energy load curve instead 

of using the measured energy are, generally, less than 5 %. These properties make the load curve 

useful in three applications: 1) to specify and check the building energy performance, 2) to 

estimate the energy consumption of a given building in another climate, and 3) to compare 

energy performance for different periods of time.  Since the load curve is a characteristic of the 

building, which is independent of the climate, it can be used as a performance requirement for 

the design that may be easily checked during the operation of the building. The load curve 

obtained experimentally may be used to estimate the energy consumption of a building in 

another climate. This may be helpful for a first estimate of the feasibility of an exemplary 

building in a new climatic context. The same experimental load curve may be applied to assess 

the building performance in different years; consequently, it may be used in service contracts 

that offer comfort as a product. The energy consumption will vary from year to year not only due 

to the weather but also to the operation of the building; these variations are partially shown by 

the load curve.  

The main disadvantage of the load curve is that it characterizes only the operation modes 

for heating and cooling but not for ventilation and it does not show explicitly the influence of the 

temperature comfort range on energy consumption. The information given by the load curve may 

be conveyed by the free-running temperature. The advantages of using the free-running 

temperature are that it describes the thermal behavior of the building that is decoupled from the 

temperature comfort domain and the weather data. By using the thermal characteristic of the 

building, the comfort range and the climate, we may obtain the distribution of degree-hour, 

which is mathematically equivalent to the bin method employed in energy estimating methods. 

The total thermal conductance, which makes the link between the energy load curve and the free-
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running temperature, may be helpful in estimating the energy consumption from the frequency 

distribution of degree-hours. 
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