Journée thématique SFT-IBPSA mars 2006

ESTIMATION OF ENERGY PERFORMANCE OF BUILDINGSBY USING THE

FREE-RUNNING TEMPERATURE

Francis Allard, Cristian Ghiaus
Laboratoire d'Etudes des Phénomeénes de Transfpligps au Batiment, Université de La Rochelle,
Av. M. Crépeau, 17000 La Rochelle, France

E-mails:francis.allard@univ-Ir.fr ~ cristian.ghiaus@univ-Ir.fr

Abstract

This paper demonstrates that the time series valbéned from measurements or dynamic simulateoonbe used
to estimate the energy load curve, that this cuney be applied to calculate the energy consum@iwhthat the
free-running temperature is an equivalent formheflbad curve. The main advantages of using theegrof free-
running temperature are that 1) the dynamic behawmay be described by steady-state concepts, 2ylbée range
of building operation (heating, ventilation and og) is described by a single concept, and 3)ttieemal behavior

of the building, the comfort and the climate areaieled. The mathematical formalism uses matriatimt.
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1 Introduction

Currently, energy performance of buildings is aseddy using two types of methods: steady-
state and dynamic. Steady-state approach is apat@pf the building operation and the
efficiency of HVAC systems are constant, at least intervals of time and/or outdoor
temperature [1]. Dynamic analysis, which uses lmgidhermal simulation, requires exhaustive
information about the building construction and rgpien. The results are usually given in the
form of time series. The current dynamic approaedds two important improvements in order
to become a current practice: to reduce the ammfunput data [2] and to give more condensed
information as results.

A new paradigm for estimating the energy perforneaimcthe initial stages of design is
based on frequency distribution [3] which may benbined with qualitative reasoning [4]. The
advantage of the frequency distribution over theetiseries is that the information contained is

much richer.
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Nomenclature

q heat flux, energy rate (W) Subscripts
S complex variables = o + ja b base

(radE™) o cooling
F frequency occurrences (-) cd  conduction
K thermal conductance (W/K) cl lower comfort limit
Q energy (J or KWh) cu upper comfort limit
R  thermal resistance (K/W) fc free-cooling
T temperature (K or °C) fr - free-running

g gains
Vectors h heat
F frequency occurrences (-) [ indoor
K conductance (W/K) I total loss
Q energy (J or kWh) 0 outdoor
T temperature (K or °C) S sun
\ ventilation

Symbols
X matrix product Diacritical marks
C element by element array ~ transfer function

multiplication - mean value
Superscript Greek symbol
T transpose o condition, 50{0; 1}

For example, the designer would be more intereistede frequency of occurrences and in the
duration of the indoor temperature values largantthe upper comfort limit in a period of, lets
say, 10 years, than in the time variation of tmegerature during each day of a standard weather
year. With this information, the design decisionscdime a choice of accepted risk with
important economic and social benefits.

Steady-state methods based on temperatures [3,d] wad (i.e. heating / cooling) curve
[7] can be adapted to characterized the dynami@wbeh by considering their frequency of

occurrence or probability distributions [3]. Theatb curve and the temperatures were used




Journée thématique SFT-IBPSA mars 2006

separately in analyzing the building performanced|8 This paper demonstrates the equivalence
between the load curve and the free-running temyexrawhich allows us to analyze the

building in heating, ventilation, and cooling regsby using a single concept. The advantage of
this method consists in decoupling the three mantofrs that influence the energy consumption

of the building: the thermal behavior of the builglj the thermal comfort range and the climate.

2 Energy calculation from load curve

The heating load for a bin (i.e. an interval) oé thutdoor temperature for a given operating
mode of the HVAC system is

G = K(T, - Ty, (1)

where K, K =K +K,,

is the mean value of the thermal conductanceTand the outdoor

temperature for which the heating load is zerdedahe base temperature

Tb ETO g,=0 * (2)

By using the equation (1), the sum of energy ratééating in a bin around, is:

ZthJ:th =FK(T,-T,), (3)
where and the brackets | indicate the operation:
fif f <0
f|= :
L {Ootherwise @

F = F(T0| g, <0) is the frequency of occurrences of the outdoomemature in the considered

bin, with the condition that the heating is needdtk energy consumption on the

whole range of variation of the outdoor temperatsire

ZthFFTXKD(TO-T_b), (5)

o

T,=[T, T, .. T,]" is the vector which represents the centers ofkims of outdoor
temperatureF =[F(T,,) F(T.,) .. F(T,)]" is the vector of frequencies of occurrences of
outdoor temperature in the bing, and K =[K(T,,) K(T,,) .. K(T,)]" is the vector of

mean global conductance values corresponding tditieT,. The operatorx represents the
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matrix multiplication and the operatar represents the array multiplication, i.e. the eatrby-

element product of arrays:

K |:H—o = [K(Tol) EI_ol K(TOZ) D_OZ K(Tok) |_—Tok]T . (6)

If the values of the vectdf are constant, then:
K OT, =KT,, (7)

and equation (5) becomes:

T[<]

T[]

Fig. 1 Energy load and free-running temperature;fBig. 2 Energy load and free-running temperature ; for

heating: a) Heating load; b) Free-running tempeeattheating and cooling: a) Heating load; b) Free-rogrii

obtained from heating load; c) Frequency of ocawes; temperature obtained from heating load; c) Frequefig

distribution of outdoor temperature. i occurrences distribution of outdoor temperature. i
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Commonly, energy simulation software and energyensetn real buildings give energy
consumption for heating over a sample tindg, e.g. At =1h. Integrating the energy rate

expressed by the equation (1), the energy consamgtiring the periodit is

Q =K(T, -T,)At, 9)

where Q, K, and T, are the mean values of the hourly energy consamptiverall thermal
conductance and base temperature for the bin ofothdoor temperaturd,. The energy

consumption for heating is then

> QI=F" xK(T, -T,)At. (10)

If the values of the vectdK are constant, i.e. the mean values of the to&hthl conductance

are constant for a bin of outdoor temperature andperating mode of the HVAC system, then

the global thermal conductanée may be found from experimental data by regression.

3 Experimental estimation of theload curve
Representing the energy losses for heati@g,as a function of the outdoor temperature will

result in a cloud of data. Fig. 1 presents the ltesof a thermal simulation of a full air-
conditioned building. The linear regression moaelthis data cloud is:

Q=[1, T,Ixb+E, (11)

where 1. =[L...1]" OR", the hourly energy consumptio® =[Q, Q, .. Q.,]" and the
hourly mean outdoor temperatufe=[T, T, ... T.]" are the observations, atd=[b, b]"

is the unknown parameter vector. The vedfor[E, E, ... E,]' models the scatter of data
and the variation oK, and K, . The vectorb is found by ordinary or robust regression [13],
b=[1, T,J\Q (12)

where \ is the regression operator.

From equation (11) we obtain the global heat lasdfient of the building,
K =b, /At (13)
and the base temperature, i.e. the outdoor temyertr which the heat load is zero:

T, =-b,/b,. (14)
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3.1 Conditions of application and limits of ordinary regression
The assumptions made for linear regression arettieabutdoor temperaturd,, has a normal

distribution and that the heat loa@, is a random variable of meap, = 3,+A3T, and

homogeneous varianag’ . These conditions may be synthesized in [34]:

The random variable® are independent
of meany, = B, + BT, (15)

and variances?

The conditions (15) imply that the residuals of thgressions should have a normal distribution
of zero mean.

Over a long period of time, the statistical disttion of the outdoor temperatur€,(t , )

is normal (or Gaussian). If the building if fullyr @onditioned, if the internal gains (occupation)
and the ventilation rates are independent randamiablas having a normal distribution, and if
the indoor temperature is controlled within a narmange, then the energy load (heating and
cooling) has also a normal distribution. These @ots are not satisfied in real situations; for
example, the building is not air-conditioned atomstant temperature for the whole range of the
outdoor temperature. Consequently, the outdoor éeatpre which correspond to the heating
period does not have a normal distribution.

The heating load is, in a first approximation, mefir function of the random variable
outdoor temperature, as indicated by the equafiéh [The linear transformation will change the
mean and the variance but not the form of theibdigion. Whenx is vector of random values,

if y=[1 x]x[a b]
thenu, =a+by, (16)
and o, = |bo,

where p and o represent the mean and the standard deviatioheoindices variables. If we
want to find the answer to the question what isekgected value o as a function ofl, then

we use the least mean square to estimate the deats of the equation:
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Q=[1 TJlx[a bl (17)
as

(T _,UT)T X(Q_IUQ)

= 18
bT (T_ILIT)TX(T_ILIT) ( )
and
ar = flg =gty (19)

An example of estimation d® =[1 T,]x[a, b;]" for a real building is given in Fig. 4 (a):
Q =-2243+ 14TT,. (20)

On the other hand, if we want to answer the questibat is the outdoor temperatufe
for which the building is in thermal balance fogiaen energy flow rateQ), then we find out by

regression the coefficients of the equation:

T,=[1 Qlx[a, b’ (21)
as
Q)" X(T =)
° T Q) X Q1) (22)
and
Ay = Ur ~ bQ,uQ . (23)

An example of estimation of, =[1 Q] x[a, bQ]T for a real building is given in Fig. 4 (a):

T, = 999+ 028Q. (24)

The correlation coefficient of the regressions @ (21) is

o = by, . (25)

For the example shown in Fig. 4 (a), by using tadues from (20) and (24), it results
rTiQ = 041. This value shows a small correlation between thatiwating low confidence in the

model. Note that the model (17) will give good Hestor the estimation of energy consumption
by using equation (10) for the data set on whiclvas calculated but the results will be much

less precise when used with other sets of outagmopérature.
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3.2 Robust regression of heating load curve based on g-q plot

A robust regression based on quantile — quantde iplproposed to mitigate this problem. The
discussion of this method is done on real dateectdt in a school building in La Rochelle,
France, for a month during the heating season. Theat is heated intermittently, with the
daytime set-point of 20°C and the nighttime senpaif 15°C. The data set considered in this
example is selected for daytime, from 10:00H t@OFA.

The points in a g-q plot represent quantiles ofdam. Quantiles indicate the number of

elements of a random variable that are in a gieege. The&-th quantile,R, , is that value of the
random variablex havingN values, sayx,, which corresponds to a cumulative frequency of

Nk/n. The quantile is called percentile far= 1(86]. The 28' and the 7% percentiles are
called the first and the third quartiles, respeadtiy and the 50 percentile is called the median
[34]. If the points in a g-g plot lie roughly onliae, then the distributions are the same, whether
normal or not.

A robust estimation of the linear relation betwelea outdoor temperature and the heat
load may be done based on the central region af@lot by considering data between tffe 1
and the % quartile. If the two distributions are the same fbis quantile range, then the
coefficients of the model

Q=a+bT, (26)
are:
b=0o,/0; (27)
and
a= p; —biy, (28)

which represents the principal component axis ¢n &i

Equation (28) is a direct result of the fact tliats a function of the random variablg
and it is in accordance with the set of equatidi@g.(In Fig. 4, the principal component axis (28)
is located between the regression models (17) aby Fig. 4 (b) shows that the model (28)
approximates the g-q plot in the central zone.

It is known from physical considerations that tektion Q = f (T, ) is non linear for hot
water heating systems equipped with radiators duthé nonlinearity of the heat transfer by
convention and radiation:

P =kS(T, -T.,)",1<n<15 (29)
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N°of occurences
Q Quantiles [kwh]
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Normalized TO and Q T0 Quantiles [C]

Fig. 3 Outdoor temperature and the heating load haveafly the same statistical distribution. a) bgtam b)
quantile-quantile plot

* Data + Data

L} |
-.Q:aT+bTT Q:a1+b1T

Q [kwWh]
Q [kwh]

Fig. 4. Regression models on a) scatter plot b) gleagtiantile plot

where P is the heat flux of the radiatorg, is the global transfer coefficien§ is the total
surface,T, is the ambient temperature amg is the mean temperature of the hot water:
T, =T, +T)/2 (30)
where T, and T, are the supply and the return hot water tempezattespectively. The
nonlinearity of the relatiorQ = f (T, )nay be modeled by considering a quadratic funobbn
the type:
Q=a, +b,T, +c,T2. (31)

For the same reasons as above, a robust estinwditiba parameters of equation (31) can
be done by using the data from the g-q plot betwiberf' and the % quartile. For the data set

shown in Fig. 4, the model obtained is:
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Q =-2035+ 012T, + 015T /7. (32)
This model has a small slope fég = -5°C which is the design temperature for heating in La

Rochelle, France, and a higher slope for the beEsperature of 12°C.

When energy consumption is estimated by using emudi0), the ordinary regression,
equations (17) - (19), gives relative errors of%0.tor the data on which it was obtained and of
about 5-10 % for different set of data. The g-q esgions, equations (26) and (31), give the

same relative error of 2-4% for the data set orctvitiwas obtained as well as on new data set.

4 Relation between the free-running temperature and theload curve
The heat gains from sun, occupants, lights, ancgb,fq,, are equal to the total energy loss
when the outdoor temperature is equal to the balgoint, T,, for a given lower limit of the
indoor comfort temperaturd,, [1]:
g, =K* (Tq _Tb) . (33)

The free-running temperatur@,, , is the indoor temperature when no energy is segpl

by the heating or cooling system and the air pebifigaof the building is kept at the winter

value, i.e. the windows are closed [3]. In thisezdke heat gains are:
9, =K* (T - T,). (34)

From equations (33) and (34) it results that:

T, -T,=T,-T,. (35)
Expressed as a function of the free-running tempesathe heating load equation (1) becomes:
Gy = K(Ty = Ty). (36)

From equation (36) we obtain the free-running terafjee:

T, =T,+R*q. (37)

With the notations used, the energy rate for hgat,, is negative. For practical purposes,
equation (37) may be expressed as a function oktiezgy consumption@h, during a time

interval, At :

Tfr :Tcl +ﬁ*6h /At . (38)

10
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Equation (38) provides the means of representindré®erunning temperature as a function
of the energy load. Fig. 1 (a) shows the scattelagd of the energy consumption and the load

curve obtained by regressio®,,. Fig. 1 (b) shows the equivalent of the panelofaained by

using the free-running temperatures calculated wgbation (38). The last panel, Fig. 1 (c),

shows the frequency distribution of the outdoorgerature.

5 Energy performance evaluation by using the free-running temperature

The free-running temperature may replace the loadecio estimate the energy performance of
buildings. In addition, it may be used in energiineating methods such as degree-day and bin
methods or to assess the climatic suitability ofA@/solutions and the potential for cooling by
ventilation [3, 4, 14].

The load curves for heating and air conditioning slrewn in Fig. 2 (a). The regression

line Q, represents the heating load. The regression linedoling is more difficult to obtain

due to data scattering produced mainly by the tiaentilation rates used for free-cooling
[15]. Since the building is the same, it may beuas=d that the cooling load is similar to the
heating load with a difference introduced by tharade of the base temperature equal to
T, —T4. Consequently, the cooling load obtained from ihgatoad Q,, is parallel to the
heating loadQ, , and biased so that it passes through the cenean() of the data cloud.

The free-running temperatures, obtained by usingtemu (38) for the regression line,
are shown in Fig. 2 (b). Although mathematicallyigglent to Fig. 2 (a), this is a condensed

representation of the building performance duringatimg, ventilation and cooling. The

conditions for heating, ventilation and cooling denexpressed as:

_ Lit T, <T,
"o T, 2T, (39)
_ |4 T, >Ty andT, <T, 40
Y 0, if not ’ (40)
and
if T, >T
6, = {ll o (@1)
0, if not

The condition for free-cooling (cooling by ventilari) is a sub-domain of ventilation,

11
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Lif T, >T, andT, <T,
fc (42)

0, if not
These domains are shown in Fig. 5. The examplestitan in Fig. 2 (b) reveals that the

free-cooling potential is not fully used since #hare many points plotted for mechanical
cooling in the free-cooling domain.

45,Temper\atures ‘ f:ree
Tei lower limit for comfort cooling I.l”’
4071 T, upper limit for comfol |
T; free-running HM“II
1 o A1l
o outdoor. il

Temperature [TC]
N
a1
o

><€ ><
Hea/t'y@ I~ Ventilation ~ ' Cooling
0 10 20 30 40
Outdoor temperature [C]

Fig. 5 HVAC operating zones: 1) heating, 2) vetitla 3) free-cooling, 4) mechanical cooling.

The frequency distributions of heatin,, ventilation,F,, and cooling,F_, are shown in Fig. 2

(c). They represent the number of occurrences afcmuttemperature that satisfy the conditions

(39), (40), and (41). The free-running temperatdrg, the comfort rangeT, and T, and the

cu’?

frequency distributionsk,,, F,, andF_, can be used in energy performance estimationodsth

such as the bin method [3, 14]. The frequency tistion of degree-hour in bins of outdoor
temperature for heating is:

Foun = F, O(Ty = T4,), (43)
for cooling is:

Fone = Fc O(Ty, = Ty), (44)
and for free-cooling is:

Forie = Fe (T4 —Tew) - (45)

Multiplying the equations (43), (44), and (45) by we obtain the frequency distribution of
energy consumption for heating and cooling andhefenergy savings for cooling by using free-
cooling.

The total energy for heating is:

12
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Q, =F, xK(T,-T,), (46)
and for cooling is:

Q. =F. xK(T, -T,)- (47)
The total energy saved for cooling by using ventlais:

ch = ch X K(Tfr _Tcu) ' (48)

6 Conclusions

The load curve may be used in conjunction with tregdency distribution of the outdoor
temperature to estimate the energy consumption ladilaing in different locations or in the
same location but in different years. The erronoohiced by using the energy load curve instead
of using the measured energy are, generally, kess3 %. These properties make the load curve
useful in three applications: 1) to specify andothéhe building energy performance, 2) to
estimate the energy consumption of a given buildmgnother climate, and 3) to compare
energy performance for different periods of tinfeince the load curve is a characteristic of the
building, which is independent of the climate, d@ncbe used as a performance requirement for
the design that may be easily checked during theradipon of the building. The load curve
obtained experimentally may be used to estimateetergy consumption of a building in
another climate. This may be helpful for a firstiraste of the feasibility of an exemplary
building in a new climatic context. The same expental load curve may be applied to assess
the building performance in different years; conseyly, it may be used in service contracts
that offer comfort as a product. The energy consionptill vary from year to year not only due
to the weather but also to the operation of théding; these variations are partially shown by
the load curve.

The main disadvantage of the load curve is thataracterizes only the operation modes
for heating and cooling but not for ventilation ahdoes not show explicitly the influence of the
temperature comfort range on energy consumptionifffbemation given by the load curve may
be conveyed by the free-running temperature. Theargdges of using the free-running
temperature are that it describes the thermal behaf the building that is decoupled from the
temperature comfort domain and the weather datauddyg the thermal characteristic of the
building, the comfort range and the climate, we nodyain the distribution of degree-hour,
which is mathematically equivalent to the bin mektlenployed in energy estimating methods.

The total thermal conductance, which makes theldgtkveen the energy load curve and the free-

13
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running temperature, may be helpful in estimatimg ¢nergy consumption from the frequency

distribution of degree-hours.
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