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RESUME. Les conditions limites internes d'une simulation de la performance d'un batiment sont souvent
simplifiées en imposant des profils déterministes et indépendants du batiment, ce qui conduit a une sous-
estimation de lincertitude sur la performance énergétique. Cet article fournit un bref apercu de la littérature
disponible sur les modeles de comportement multi-agents pour les batiments résidentiels. Ces modéles sont
évalués a partir d'une description générale du comportement des occupants, qui peut étre qualifié de
stochastique, adaptatif et individuel. Cet apercu met en évidence le manque de maturité de ce domaine de
recherche. Néanmoins, un modéle intégré du comportement est proposé, prenant en compte l'occupation,
l'utilisation des équipements électriques, la température de consigne, I'éclairage artificiel, I'utilisation des
protections solaires, les ouvertures des fenétres et l'utilisation de I'eau chaude sanitaire.

MOTS-CLES : batiments résidentiels, modéle du comportement, consommation énergétique.

ABSTRACT. The internal boundary conditions for building performance simulation are often simplified to
deterministic building independent schedules. As a result, simulation studies underestimate the degree of
uncertainty on the energy performance of actual buildings. This article presents a concise overview of the
literature available on empirical agent-based behavioural models for residential buildings. Based on a general
description of occupant behaviour in buildings, which can be described as stochastic, adaptive and individual, the
available models are evaluated. From this review, it is clear that this research field is not quite mature yet. Even
s0, an integrated behavioural model, aimed at generating realistic internal boundary conditions for building energy
performance simulation, is proposed. The model comprises presence, electrical appliances use, temperature set
points, lighting use, shading use, window-opening and domestic hot water use.

KEYWORDS : residential buildings, behavioural model, energy use.

1. INTRODUCTION

During the past decades, several dynamic Buildingrgy Simulation (BES) tools have been
developed, providing virtual test environmentsttalg energy efficient measures on both the building
level and the systems level during the conceptiages for the construction of new buildings as well
as retrofitting of existing buildings. However, wheimulating any system, the definition of the
boundary conditions at which it operates is asgieeifor the simulation results as the model of the
physics of the system itself. This is especiallyetfor buildings, where the boundary conditionsyvar
largely. Building simulation boundary conditionsnche subdivided in external — all geographical
influences — and internal conditions — relateddoupancy and building use. This paper focuses @n th
latter. The internal boundary conditions are ofsamplified to deterministic building independent
schedules, based on measured or estimated avefagagsesult, simulation studies underestimate the
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degree of uncertainty on the energy performancactfal buildings (e.g. (Schnieders and Hermelink
2006)) and overestimate the impact of retrofittimgasures (e.g. (Hong 2006)). The former is
particularly the case in very low-energy designisese the relative influence of the building usesis
as solar heat gains and internal heat gains are mffectively conserved and thus the energy
performance is more sensitive to the presence atidities of the occupants (Wilke 2013).
Acknowledging the need for a more realistic andhiigresolution definition of internal boundary
conditions, a remarkable rise in empirical studiigihg to quantify occupancy and occupant behaviour
has been seen in the recent past.

This paper attempts to give a global literatureraiesv of those empirical studies, from the point
of view of usability in coupling to BES tools fonergy performance calculations. The general aspects
of occupant behaviour in residential buildings discussed first (section 2) to create a framework f
evaluation. The state-of-the-art of all relevanbfeids of behavioural research is discussed in the
subsequent section (section 3). The best availabtiels in each subfield are selected and assembled
in an integrated behavioural model structure (sactl). Such an integrated model, combining the
results of field studies in all relevant behavidwsabfields in a coherent manner, has not yet been
proposed before, to our knowledge, though modefliameworks have been presented for residential
user behaviour, e.g. by Kashif et al. (2013).

The focus of this research lies solely on residértuildings, aiming specifically on low-energy
designs. Only agent-based behavioural models ahedied in this study — which represents the lion
share of the publications. These are models inlwthie actions and driving forces for these actimins
individual occupants are explicitly modelled. Tle@asons for this methodological limitation are Ifig t
aim for a behavioural model usable on differentesgaranging from a single building to the national
building stock, (ii) the aim for a model that istr@polatable to dwellings beyond the studied baogdi
set, to be able to study the effect of the intréiducof new technologies, changing climatic corais
etc., and (iii) to allow all aspects of occupanthdn@our to be integrated consistently in a
comprehensive model (see section 4), to take desstdwusal links between different aspects into
account. The down-side of agent-based models idatige amount of empirical data necessary to
construct, calibrate and validate them.

2. GENERAL ASPECTS OF OCCUPANT BEHAVIOUR

2.1. NATURE OF OCCUPANT BEHAVIOUR

An important finding in the context of occupant belour was that "the use of controls is clearly
influenced by physical conditions, but their usadt® to be governed by a stochastic rather than a
precise relationship" (Nicol 2001). Occupant bebaviis thusadaptiveand stochasti¢ to which it
could be added that it isdividual, in that respect that behaviour is "governed Iffgdint but distinct
habits" (Andersen et al. 2011). This last aspectindividual variability depends on many
characteristics, such as socio-demographic, plogidl or cultural conditions. The behavioural
models discussed in this paper will be evaluatedth&n proper incorporation of each of these 3
essential features, in the form relevant for eaudffisld (see 2.2).

The modelling methodology typically applied for agbased behavioural models is the Markov
chain. A first-order Markov process is a discretedom process where the state of the next time step
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only depends on the state of the current time Sibps, at each time step, a randomly drawn number
is compared to a probability of transition, whickepdnds on the physical environment — thus
introducing the stochastic and adaptive aspect. piueess is called inhomogeneous when the
probability functions are time-dependent. The indiial aspect can be integrated by defining several
probability functions for different occupant typedince these models only depend on the previous
time step, the duration of the modelled behaviamot be captured coherently (Wilke 2013). This

drawback can be resolved by applying a hybrid higinder Markov process, in which the durations

are explicitly modelled (often based on survivahlgsis) and the transition between activities is

modelled in the traditional manner.

2.2. SUBFIELDS OF BEHAVIOURAL RESEARCH

The actions of occupants, relevant to building eeeiing, can be divided into 3 categories (Fabi et
al. 2011): actions to adapt the environment, astithrat produce internal heat gains and actions to
adapt the occupant to the environment (e.g. drinkinchanging the clothing level). Given the focus
on energy performance simulation, the latter categan be discarded here — though its influence on
thermal comfort calculations is of course key.elpresents a set of variables that are often unknown
and will therefore create an added variability e tadaptive action probabilities. The aim of the
integrated behavioural model is to serve as intddoandary input for dynamic simulation concerning
all aspects of residential energy use, namely tattappliances, lighting, domestic hot water and
heating and cooling energy. These inputs are pestlircthe form of time series.

Based on the foregoing remarks, the subfields babieural research to be integrated in the model
are identified as: presence, use of electricaliappés, system temperature setting, lighting, wivdo
and door-opening, shading device use and domesttiwditer use.

3. STATE-OFTHE-ART OF BEHAVIOURAL SUBMODELS

3.1. PRESENCHACTIVITY

The presence of people induces metabolic sensitiidagent heat gains as a direct effect on the
building's energy balance. More importantly, givba premise of agent-based modelling, predicting
the presence is an essential preprocessing stephdoother aspects of occupant behaviour, as
discussed in the subsequent subsections. As peesamd activity modelling are often treated
simultaneously in the literature, they are discdgsgether in this subsection.

Correlated

Number of ~ CXPliCit socio- Long activities
L duration demographic L
activities modellin variabilit absences within
g y household
(Tanimoto et al. 2008b) 32 Yes Yes No No
(Richardson et al. 2010) 7 No No No Yes
(Widén and Wackelgard 2010) 9 No No No No
(Wilke 2013) 20 Yes Yes No No

Table 1 : Overview of presence/activity modelstidctive properties.

Several agent-based models incorporating the sttchaspect have been proposed during recent
years. At the basis of all agent-based residenti@dsence models lie Time Use Surveys
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(TUS),questionnaire studies in which people metiasly record their activities throughout a 24h
cycle.

Table 1 shows an overview of the existing stochaettivity models. None of them combines the
essential features of individual variability andtiety correlation within a single household.
Furthermore, since at the basis of all models likS3, typically executed for a single week day and
weekend day, none of the models take into accorggularities such as long absences or gatherings.

3.2. APPLIANCE USE

Accurately modelling the electrical power demandhef residential sector has long been of interest
to the field of electrical engineering researchisThas led to a multitude of empirical models, tjou
often aimed at generating end-use curves withoptiagixlinks to the occupants. Given the agent-
based approach adopted here, only models deritimglectrical energy use from activity modelling
are considered. Table 2 summarizes the most imgdeatures of these models.

Sharing of Probabilistic  Appliance Socio- Inclusion of

appliances hi demographic  activity
within power use owgerbs_l_ 'P variability in  independent
household ber probability appliance  appliances
appliance sampling :
ownership

(Tanimoto et al. 2008b) Yes No Yes No Yes
(Richardson et al. 2010) Yes No Yes No Yes
(Widén and Wackelgard 2010) Yes No No No Yes

(Wilke 2013) Yes Yes Yes Yes No

Table 2 : Overview of electrical appliances modeélstinctive properties

Again, none of the models offer an integral soluttmmbining all essential features, though the
model of Wilke (2013) can relatively easily be cdempented with activity independent energy use,
e.g. by refrigerators. Tracking each and everyiappé found in a household is, at least for thetim
being, impossible due to a lack of longitudinal @&mwpl data linking activities and appliances use.
Therefore, each of the considered models containgsa electricity use’ term that can be used to
calibrate the models to comply with aggregated datdwelling-averaged end-use.

3.3. TEMPERATURE SET POINTS

In this subfield, the user supplied thermostatpsét is of interest, as this is evidently a deasi
influence on the internal temperature and thush#®ing energy use. The findings of Andersen et al.
(2011), that thermostat settings are very differeetween dwellings but consistent for each
household, suggest it is not necessary to updategahpoint at each time step, but that is sufficie
update its value seasonally or even sample a dhoglsehold set point at the start of the simulation

In principle, sampling this set point should be eldiom a distribution dependent on many known
influence factors, such as socio-demographics. trcknowledge however, quantified correlations of
this nature are not yet published. The best aVailsturces are based on an extensive empirica} stud
in English homes reporting a mean heating set poin21.1°C with standard deviation 2.5°C
(Shipworth et al. 2010), later refined to a mear20f6°C (Huebner et al. 2013). These results are
comparable to the reported desired temperatureset of passive houses, ranging from 17°C to 25°C
with a mean of 21.5°C (Schnieders and Hermelink6200
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In summary, a thermostat set point for each hoddetan thus be sampled from an empirical
Gaussian distribution, though without linking itttee household characteristics. This implies a ¢dss
information leading inevitably to an overestimatioh the variability, though its magnitude is
unknown. Furthermore, a dependency of the set teafye on the outdoor climate is not
incorporated, which means the adaptive aspectgjlected in this subfield.

3.4. LIGHTING USE

Electric lighting forms an important aspect of daie electric energy use and at the same
accounts for a substantial share in the diurnalamulal variation (Widén et al. 2009). The latter i
due to the fact that lighting use, in contrastpl@&nces use, includes a strong adaptive aspeetiad
its dependency of the available daylight.

Only 2 models can be found that incorporate thegp#ide aspect in an agent-based approach — i.e.
an approach in which the lighting use depends enatitive occupancy. The model of Widén et al.
(2009) includes a proportional dependency of thletiing power use on the outdoor illuminance level,
while that of Richardson et al. (2009) uses an @utdrradiance threshold to produce a binary input
for lighting use. It should be noted that both agghes represent an indirect accounting of the
adaptive aspect, as it is in the end the indooligtayilluminance level that will drive occupants act.

The model of Richardson et al. (2009) is somewhatendetailed, as it models each individual light
bulb, the occurrence of which is sampled at the sfathe simulation period from an empirical data
set to include the variability between householdlctigh the sampling is random and thus does not
explain the variability.

3.5. SHADING USE

There are currently no agent-based models of negédeblind use available. More in general,
empirical studies producing quantified results loa influencing factors are very rare. Andersen.et a
(2009) confirmed the adaptive and individual aspécthading use by finding statistically signifitan
of solar radiation and socio-demographic variableself-reported shading use.

Due to this existing gap in research, the use aflisly devices by occupants can only be modelled
in a simplified manner. The main principles candeeived from the findings of studies performed in
office buildings, which are much more numerousutiiono consensus model exists yet (Van Den
Wymelenberg 2012): shading use is relatively if@nte the shading device is lowered, it staysat th
position all day) and depends on direct irradiattonthe facade and, evidently, the presence of the
inhabitants. Varying the irradiation threshold befoaction allows the inclusion of individual
variability.

3.6.  WINDOW-OPENING

Roulet et al. (1991) defined transition probalgktiwith a 10 minute time step for window opening
and closing depending on the outside conditions. diithors deduced Markov Chains for each of the
16 orifices in the facade, both windows and dotirss effectively treating them as independent. The
individual variability was acknowledged by definiag ‘average user’, a ‘closer’ and an ‘opener’.
Given the fact that the study was published in 1%9&an be assumed that the measurements were
performed in housing units not yet equipped withechanical ventilation system. This, unfortunately,
renders the results all but unusable for applicatiolow-energy dwellings typically equipped with

-5-
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mechanical ventilation systems, as the type ofilaiain system greatly influences window operation
by occupants (Erhorn 1986).

The work of Andersen et al. (2013) resolves th# issue, as it proposes separate Markov chain
models per ventilation system based on measuremeni@anish housing units. The transition
probabilities depend on physical variables — tmeuding the adaptive aspect — and to a limited
extent on socio-demographics — partly incorporativegindividual variability.

3.7. DOMESTIC HOT WATER USE

In principle, modelling the domestic hot water u#®@ough an agent-based approach is
methodologically comparable to the modelling ofctieal appliances use (3.2), by linking the
activity (3.1) to the use of equipment. Ideallye throbability of occurrence of this equipment is
modelled dependent on household variability andueof hot water at each activity is sampled from
a probability distribution. However, the only exigf agent-based models, that of Tanimoto et al.
(2008a) and Widén et al. (2009), provide only dateistic volumes and supply temperatures linked
to the relevant activities, such as showering ahivay the dishes.

4, INTEGRATED BEHAVIOURAL MODEL AND BESCOUPLING

Figure 1 shows a schematic overview of the integréehavioural model and its coupling to BES
tools. The arrows indicate the information flow,vdfich the dotted arrows in grey are currently non-
existent but pertinent links. The integrated bebtasal model, implemented in Matlab, thus produces
the internal boundary conditions for the buildingnglation. Note the bidirectional coupling between
the windows use model: as this behaviour dependtheroccurring conditions inside, a real-time
coupling is necessary. The behavioural submodetemtly implemented are those of Wilke (2013)
for presence, activity and appliances, of Huebnermle (2013) for temperature set points, of
Richardson et al. (2009) for lighting use, of Arsfar et al. (2013) for window-opening and of
Tanimoto et al. (2008a) for domestic hot water @w®ading use is implemented in the simplified way
described above (3.5).

The determination of static parameters in the megssing step can be readily integrated in an
uncertainty analysis.

5. CONCLUSIONS AND FUTURE OUTLOOK

This article presents a concise overview of therditure available on empirical agent-based
behavioural models for residential buildings. Basach general description of occupant behaviour in
buildings, which can be described as stochastiaptace and individual, the available models are
evaluated. Even though models properly including three aforementioned features are not yet
available for each behavioral subfield and causdds|between subfields are often still lacking, an
integrated behavioural model, aimed at generagadjstic internal boundary conditions for building
energy performance simulation is proposed.

In future work, this behavioural model will be foer developed and applied in uncertainty
analyses of the performance of residential builsling
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Figure 1: Schematic overview of integrated behadbmodel for residential building use
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