

Agent-based modelling of occupant behaviour for residential buildings in dynamic building performance simulation

Wout Parys, Bernard Souyri, Monika Woloszyn LOCIE IBPSA-FR Conference, Arras 20 May 2014

Contents

- Introduction
- General aspects of occupant behaviour in buildings
- Overall integrated model structure and overview
- Appliances use in residential buildings

Introduction

- In practice:
 - Large differences between predicted and simulated energy use
 - Large variability in measured performance of similar buildings

(Schnieders and Hermelink, 2006)

- Rapid increase in computational resources
- ightarrow Simulation community moves towards probabilistic approach

Introduction

- Much effort invested in uncertainty and sensitivity analysis algorithms
- Lack of empirical data on input uncertainty linked to occupancy and occupant behaviour
- → Integrated methodology proposed, assembling empirical studies on different behavioural subfields

• Characteristics:

- Modelling architecture
 - \rightarrow Focus on agent-based models
 - Inclusion of occupant on multi-scale
 - Extrapolatable
 - Consistent and coupled modelling of all aspects
 - \rightarrow Explicit modelling of each person and action
- Modelling methodology

→ Typically first-order inhomogeneous Markov chain

• First-order inhomogeneous Markov chain

- First-order inhomogeneous Markov chain
 - time-step dependent transition probabilities
 - \rightarrow Discrete event modelling
 - Inability to coherently model state duration distributions
 - \rightarrow Hybrid approach: duration sampling when state changes (survival analysis)

- Inclusion of individual variability aspect
 - \rightarrow Use of individual transition probability functions
 - \rightarrow Define representative classes of users
 - active/passive approach
 - Socio-demographic classes

- Presence: Wilke 2013
 - First-order Markov chain
 - Based on French Time-Use Survey
 - Differentiated for 7 week days
 - Differentiated for 17 socio-demographic variables

- Activity: Wilke 2013
 - Hybrid approach
 - Based on French Time-Use Survey: 20 activities
 - Differentiated for 7 week days
 - Differentiated for 17 socio-demographic variables

- Appliances use
 - Step 1: ownership sampling (Wilke 2013)
 - Cold appliances, entertainment, kitchen, washing
 → Covers on average ± 80% of household appliance electricity use
 - Dependent on 10 socio-demographic variables
 - \rightarrow Multivariate logit regression
 - Based on Swiss household data

• Appliances use

→ Additional constant power use calibrated with total household power use

Merci de votre attention! Questions?