

Notion d'impédance appliquée à l'étude du comportement thermique d'une pierre calcaire de construction à partir de mesures en laboratoire et in situ

Tingting Wu, Emmanuel Antczak, Franck Brachelet, Didier Defer

<u>L'objectif</u> de ce travail est de proposer une méthode de caractérisation thermique in situ d'une paroi de bâtiment en complément de mesures de laboratoire de référence.

Aspect théorique:

Notion de quadripôle

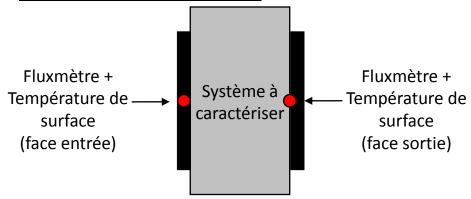
$$\begin{bmatrix} \theta_1 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & A \end{bmatrix} \begin{bmatrix} \theta_2 \\ \phi_2 \end{bmatrix}$$

Grandeurs généralisées: somme des températures ($\Sigma\theta$) différence des flux ($\Delta\phi$) différence des températures ($\Delta\theta$) somme des flux ($\Sigma\phi$).

Impédance thermique

$$\begin{bmatrix} \Sigma \phi \\ \Delta \phi \end{bmatrix} = \begin{bmatrix} H_t & 0 \\ 0 & H_s \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Sigma \theta \end{bmatrix}$$

$$Z_{s}(\omega) = \frac{1}{H_{t}} = \frac{1}{b\sqrt{j\omega}} \cdot \operatorname{cot}(anh(\frac{X_{e}}{2}); \quad Z_{t}(\omega) = \frac{1}{H_{s}} = \frac{1}{b\sqrt{j\omega}} \cdot \tanh(\frac{X_{e}}{2}) \quad \text{avec} \quad X_{e} = \sqrt{\frac{j\omega}{a}}e$$


Mise en évidence de deux modes : transfert et stockage

Etude expérimentale:

Trois approches en fonction des conditions limites thermiques imposées (déterministes, aléatoires) et de l'environnement d'étude (laboratoire, in situ).

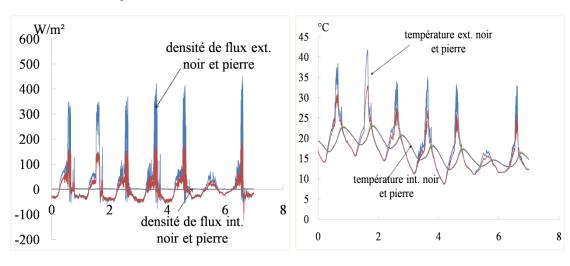
Instrumentation principale:

Principe d'instrumentation du système en entrée/sortie

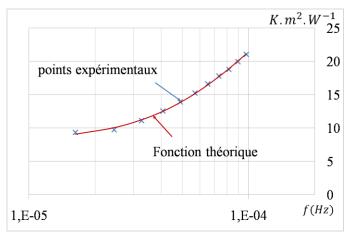
• *En laboratoire*, à partir d'échantillons par des méthodes classiques (basées sur la norme NF EN 12664).

w(%)	0	1.44	2.90	5.75	6.42	10.93	14.05
$\rho(kg/m^3)$	1723	1750	1770	1820	1830	1910	1970
$\lambda(/m.K)$	0.79	0.86	0.90	1	1.03	1.24	1.44
$\rho c(W/m^3.K)$	1.36.106	1.49.106	1.59.106	1.79.106	1.81.106	2.11.106	2.27.106
a(m²/s)	5.78.10-7	5.8.10-7	5.34.10-7	5.52.10 ⁻⁷	5.84.10-7	5.86.10-7	6.33.10-7
b(J/K.m ² .s ^{1/2})	1034	1135	1161	1344	1352	1615	1806

- *En laboratoire*, sur une surface représentative réduite de 1m² environ, dans des conditions contrôlées de flux et de température sous sollicitations déterministes, à l'aide de la fonction d'intercorrélation, on obtient la notion de déphasage en thermique du bâtiment: 7h22mn.
- *In situ,* sur une maison individuelle, l'observation de l'évolution des grandeurs thermiques en fonction des conditions climatiques extérieures.



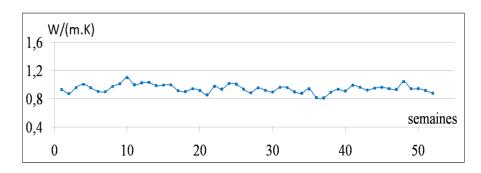
Sous sollicitations naturelles aléatoires Pas d'acquisition: 120s


Caractéristiques thermophysiques de la pierre calcaire

Positionnement des capteurs sur la paroi in situ

Résultats expérimentaux in situ:

Traitement des données:



Fonction H1 calculée et optimisée

Exemple de flux relevés en surface

Exemple de températures relevées en surface

Résultats obtenus:

Evolution de la conductivité thermique de la pierre in situ en fonction du temps

Conclusion:

- Instrumentation fluxmétrique fiable et adaptée aux conditions *in situ*.
- Approche entrée/sortie mettant en évidence un comportement évolutif du matériau constructif soumis à l'environnement climatique.
- Variations de conductivité thermique: 40% par rapport à l'état sec.
- Les études préalables en laboratoire montrent qu'elles sont liées à la teneur en eau du matériau.
- L'approche à différentes échelles permet de cerner le comportement thermique d'un matériau afin d'en optimiser son utilisation dans le cadre d'un procédé constructif.