A study of Interaction between Reactive and Anticipative building energy management.

Mahendra Singh^{1,2}, Manar Amayri², Stéphane Ploix², Frédéric Wurtz¹

1 : Univ. Grenoble Alpes, G2Elab

2 : G-SCOP France

Anticipative Energy Management

Reactive Energy Management

- It works on the "if-else" or "condition-action" rule.
- Able to anticipate energy consumption in high volatile condition such as weather change, occupancy profile, turning on or off the home appliances.
- Reactive management will provide an efficient management of resources and also a reliable plan for anticipative energy management.

How It Works?

- Get the plan(set points)
- Compare with the real scenario
- Identify the discrepancies, its cause and Characteristics
- íf
- there is no discrepancy in plan
- then
- follow the plan
- else
- apply the possible corrections

Model Requirement

- Reactive energy management requires a model with fast dynamics.
- Reactive period should be $\Delta_r < \Delta_a$
- Model should be able to incorporate the fast dynamics of occupants and environment.

Fine Simulation Model With Simulation Time =1 min

3rd Order Fine Simulation Model

1st Oder Model for Plan Anticipation

Experiments And Results

Discrepancy In Occupation-

Occupation profile for winter (a) small variation (b) large variation.

Planned and simulated result for small variation in occupation

Planned and simulated result for large variation in occupation

Discrepancy in weather

Average variation in weather for a winter day

Planned and simulated result for variation in weather

Possible Solutions

Possible cause for	Possible Variations			Possible
discrepancy	CO2 Concent	ration Energy cost	Inside temperature	solution
1-Positive	Positive	Positive	Positive	CO2 control
occupation profile				Temperature control
2-Change in outside weather	No change	Positive/Negative	Positive/Negative	Temperature control
3-Use of unplanned appliances	No change	Positive/Negative	Positive/Negative	Compute the anticipative plan
4- Opening the doors or windows	Negative	Positive	Positive/Negative	CO2 control
				Temperature control

Explanation of discrepancies with possible solutions

