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RESUME. La ventilation naturelle peut être un moyen e�cace de rafraîchir les bâtiments. L'op-
timisation du placement des ouvrants pour la ventilation naturelle peut se faire par un algorithme
génétique discret. La méthode est cependant coûteuse en calcul car basée sur la taille de la popu-
lation. On s'intéresse donc ici à l'in�uence d'un choix judicieux de la population initiale à partir
des di�érences de pression entre éléments de façade.

MOTS-CLÉS. ventilation naturelle, optimisation

ABSTRACT. Natural ventilation may be an e�cient means of cooling the build environment.
The optimal place for openings may be found using a discrete genetic algorithm, however the me-
thod is computationally intensive, as it is based on the population's size. Therefore we study here
the in�uence of an appropriate initial population, selected using the pressure di�erences between
facade elements.
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1 Introduction

Energy in buildings is a major concern of the current times. More speci�cally, the rise of
cooling expenses is likely to be a challenge in the coming decades and hence providing tools for
a better operation of natural ventilation may be of some interest.

Natural ventilation is driven by pressure, height and temperature di�erences. Common sense
o�ers a good start with positioning openings : for buoyancy-driven ventilation, inlet and outlet
shall be positioned respectively in the lower and upper parts of facades. Nevertheless, wind-driven
ventilation is more challenging : wind patterns are changing and pressures may be heterogeneous,
especially when exotic shapes of buildings are involved.

Using algorithms coupled to Building Energy Simulation (BES) in order to select openings
appears to be a promising perspective. Di�erent procedures have been explored to optimize
natural ventilation in buildings : genetic algorithms (Hamdy et al., 2011b,a) and particle swarm
algorithms (Hasni et al., 2011, 2009; Wei et al., 2015; Stephan et al., 2009). The aforementioned
works chose various cost functions aiming at maximizing comfort, air quality, or minimizing
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�nancial costs and energy consumption. To the best of the authors' knowledge they did do
not address the position of structural elements such as openings, but rather quantities such as
ventilation rates.

Positioning openings on a given facade is a discrete problem which search space is often too
large to be explored thoroughly. Indeed, considering facades with numerous layout possibilities
for openings (e.g. glazed facades), the very high number of combinations is a challenge in terms
of computational expense : selecting the position of 10 openings out of 100 possibilities yields
roughly 1013 options, which is a hundred times the estimated number of stars in our galaxy. In
the present work, we expose a method allowing for the determination of the optimal number
and position of openings in buildings with the help of a genetic algorithm. We mean to use
the computational e�ort at its best by an appropriate selection of the initial population with
a physical basis. The eventual intention is to provide practitioners a tangible method for the
positioning of openings on complex facades.

2 Discrete genetic algorithm

Genetic algorithms are widely used in building energy simulation. Starting from a given set
of solutions (called "parents"), such algorithms generate other solutions (called "children") and
evaluate them versus an objective, determining their "�tness". The �tnesses of the children are
then compared to their parents' ones, and the best individuals are kept, following Darwin's
principle of selection. This new set of individuals (called a "generation") is used to generate new
children and so on. At each generation, the population is better or equivalent to the preceding
one, which is the reason why the algorithm converges. Such methods are particularly adapted
for problems where the cost function is not regular or where the data that needs to be optimized
is discrete, as is the case for natural ventilation.

As the goal of the study is to select the openings for natural ventilation, the model we used
is the following : each solution of the problem (called an "individual") is represented by a list of
bits ("true" or "false", also called "genes" in the sequel), each of which being associated with a
window of the building. If the bit's value is "true", the window is open, otherwise it is closed.
In the present work, we used the NSGA-II algorithm (Fortin et al., 2012) that enables multi-
objective optimization without preferred objective. The selection is based on a partial order
between individuals called domination enabling to build Pareto fronts.

The creation of two children from two parents happens in two steps. First, the genes of the
parents are split into fragments and randomly distributed to their children, as in chromosomal
crossover, using a "crossover function". Random modi�cations are then made to the genes of the
children using "mutation functions". Both will be explained in the following sections.

2.1 Crossover function

The crossover function was designed to allow for the control of the level of mixing between
the genes of the parents, and to satisfy given constraints on the number n of open windows (e.g. if
nmin ≤ n ≤ nmax). The function takes as variables two lists of bits representing two parents, and
it generates two lists of bits representing the children, by random permutations between the bits
of the parents. Below is the simpli�ed algorithm of the crossover function, which is illustrated in
Figure 1 :

� Initialization of children 1 and 2 identical to parents 1 and 2.
� Search for the windows which status (closed or open) is di�erent for parent 1 and parent

2. They are divided into two lists : F1 contains the windows that are open for parent 1
and closed for parent 2, and can thus be given from parent 1 to child 2, vice versa for F2.

� Selection of the number n1 of open windows given by parent 1 to child 2, and the number
n2 of open windows given by parent 2 to child 1. The mean number of chosen windows
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is based on a geometric distribution, so that small numbers are more common. n1 and n2
also have to satisfy the given constraints on the number of openings.

� Selection of n1 windows in F1 (based on a uniform distribution) which are given from
parent 1 to child 2. Reciprocally, n2 windows are chosen in F2 and given from parent 2
to child 1.

Figure 1. Illustration of the crossover function. In this example, child 1 gives n1 = 2 open windows to

child 2, and child 2 gives n2 = 1 open windows to child 1.

The level of mixing between the genes of the parents can be adjusted with two parameters :
the probability of crossover pcrossover (if there is no crossover the children are the same as their
parents), and the mean rate of modi�cation τcrossover.

2.2 Mutation functions

Three genetic modi�cations are possible on an individual : opening windows, closing windows
and/or swapping open and closed windows. Each of these modi�cations is coded by a mutation
function as follows :

� Selection of the number of modi�cations (or permutations) to be made on the individual.
The mean number of modi�cations is based on a geometric distribution, fostering small
mutations.

� Selection of the windows to be modi�ed (or swapped) amongst the possible ones, followed
by modi�cations.

These three functions are then applied to the individual in a random order. For each mutation,
the probability pmut of modi�cation can be independently adjusted to control the frequency
of mutations at the scale of the population. At the scale of the individual, the mean rate of
modi�cation τmut is controlled by the mean of the geometrical distribution used to chose the
number of modi�cations per individual.

2.3 Choosing the initial population

The number of combinations of n open windows among N windows is given by the binomial
coe�cient

(
N
n

)
. Given the shape of this function when N increases, the combinations of open

windows rapidly get too numerous to be exhaustively tested, even with parallel high-performance
computing. In such cases, the number of tested combinations is negligible compared to the
solution space and the algorithm exhibits a slow convergence (most likely the best combinations
are not evaluated at all).

An interesting strategy to overcome this problem is to couple the genetic algorithm with an
arti�cial neural network (Gossard et al., 2013; Hamdy et al., 2011b). Here we have implemented
a simpler idea : going back to the physical basis to select an initial population which is already
better than the average, ideally with a moderate computational e�ort.
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Intuition would advise to select openings based on wind orientation : Indeed, using wind-
ward/leeward positions for openings may be an excellent initial guess. However, for exotic geo-
metries or complex urban environments, the pressure on facades may exhibit more complex
patterns, as for instance on Figure 2 showing the pressure coe�cient of the case study presented
below.

Figure 2. Pressure coe�cients on facades for a given

wind direction on the case study.

Figure 3. Scheme of the pressure nodes in building

energy simulation

In BES, wind-driven natural ventilation is function of the pressure di�erences on external
nodes (Dols et al., 2002; Axley et Nielsen, 2008), as represented on Figure 3. Finding the best
combination of openings implies solving for the non-linear equation system of size N at a sub-
hourly time step, which is is also computationally expensive.

The proposed approach hence consists in selecting the pairs of facade elements (i, j) exhibiting
the largest sum of pressure di�erence during the building's opening hours over summer. This
pressure di�erence ∆P (i, j) is the straightforward product of wind velocity at building height
from the weather data v(t), surface of both openings Si,j and pressure coe�cient di�erence
between elements Ci,j

p :

∆P (i, j) =

(
1

Si
2 +

1

Sj
2

)− 1
2

×
∑

t∈opening hours

√∣∣∣Ci
p(t)− C

j
p(t)

∣∣∣× v(t)2 (1)

The amount of calculation is reduced as the sum of pressures is computed only for
(
N
2

)
which

is about ∼ 5×103 in the case study (as a reminder, for a given N the function
(
N
n

)
is symmetrical

and reaches its maximum for n = N/2 ; values close to n ∼ 0 are reasonably low).

2.4 Objectives or Cost functions

The choice of cost function is critical as it may be considered the "compass" of the algorithm.
In the present case, we aim at improving thermal comfort while reducing the �nancial cost,
therefore following objectives were chosen :

� a metric for thermal comfort : the mean value over summer of the maximal daily di�erence
between the corrected PET comfort index as per Walther et Goestchel (2018) and the
center of the PET comfort range, that is 20.5◦C, as in Matzarakis et al. (1999).

� a function measuring the �nancial cost of openings : in our case study, we opted for a
primary dependence on the number of openings n and a relationship with the height of
the opening (a proxy for maintenance cost). The �nancial cost has therefore been de�ned

as : n+

∑
f∈open windows

h(f)∑
f∈highest windows

h(f) , where h(f) refers to the height of the centroïd of window f .

The calculation of the comfort metric requires BES over the summer season. The algorithm
runs in the Python computer language, according to the diagram presented in Figure 4.
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Figure 4. Flow chart for the computation of the comfort metric : Data from the genetic algorithm are

converted in a EnergyPlus �le generated with DesignBuilder and combined with meteorological data run

the building energy simulation. Results are then post-processed to calculate hourly PET values.

3 Application

In this section we try to address the question whether the careful selection of the initial
population impacts the convergence of the algorithm with the help of a case study.

3.1 Case study and simulation setup

An EnergyPlus model inspired by of Strasbourg's station was setup and the PET comfort
index in the hall during the opening hours was computed as presented on Figure 4. As we are
interested in natural ventilation, only the season between May and September was simulated. The
pressure boundary conditions are determined using the methodology described in Walther et al.
(2019), using a windrose discretisation of 24 directions and computing the pressure coe�cient
for each facade element (see Figure 2). For the sake of the study, every window of the N = 98
was allowed to be turned into an opening.

The genetic algorithm described in Sections 2.1 and 2.2 was setup with following parameters :
� Crossover parameters : pcrossover = 0.8 and τcrossover = 0.5
� Mutation parameters : padd = premove = 0.08, pswap = 0.15 and τmut = 0.3.
As a means of comparison between the stochastic and the proposed initial selections, we

perform the optimisation using 100 individuals over 10 generations, which is an acceptable trade-
o� between population size and the accepted computational e�ort in engineering (that is : the
algorithm can run overnight on any computer).

Following sections show the results for both methods, �rst imposing the algorithm a �xed
number of openings and then using a variable one. When trying to compare these methods, a
drawback of stochastic selection is obviously its variable nature : the initial population may be
more or less close of the optimal solutions. Repeating the comparison a su�cient number of times
would allow to determine the performance of the proposed method more reliably. However, time
lacked to perform such an analysis and we will have to be satis�ed with the preliminary results
obtained here, knowing that convergence may well not be attained.

3.2 Fixed number of openings

In this case the number of openings is constant, taken as n = 2. The explored fraction of the
space of solutions is (10 generations × 100 individuals)/

(
98
2

)
∼ 0.2. One can see on Figure 5a)

that the Pareto fronts are very likely. As the cost objective is strongly dependent on the number
openings (see section 2.4), in the present case it does exhibit only small variations. The comfort
metric however may vary signi�cantly, between ∼ 8 to 12 [K]. Figure 5b) shows the percentage of
individuals in the Pareto front depending on the generations : for the �rst generation, it is clearly
visible that the computed initial population performs better than the stochastic one with 20% of
individuals in the Pareto front. This percentage is favourable for the four �rst generations, after
what no clear trend is visible.
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(a) Pareto fronts for both methods. (b) Percentage individuals in the Pareto per generation.

Figure 5. Comparison of the results after 10 generations of 100 individuals.

Figure 6 shows the performance of each individual and the Pareto front for both methods. The
distribution of individuals is similar and spreads over the same range of abscissa and ordinate.

(a) Stochastic initial population. (b) Physically based initial population.

Figure 6. Pareto fronts after 10 generations of 100 individuals.

In the studied case, for a �xed, low number of openings, the computation of the initial
population seems to provide more disperse results and yields more individuals in the Pareto
front during the �rst generations. The more generations, the less the algorithm is sensitive to
the initial population, which suggests that the heuristic choice of the initial population is only
bene�cial if the algorithm is launched for a small number of generations.

3.3 Variable number of openings

Finding the best combinations for a variable number of openings was the next test for the
algorithm. A number such that 2 ≤ n ≤ 20. The possible combinations are above 1013 and hence
the explored fraction of the space of solutions is negligible (in the order of 1000/1013). After 10
generations, the Pareto fronts are quite similar for the lower values of the cost objective (objective
2), as can be observed on Figure 7a). The algorithm with stochastic selection yields a Pareto
front with more individuals having an elevated number of openings (high values of ordinates),
whereas the one with computed initial population has more individuals with a smaller number
of openings.

Figure 7 b) shows that the computed initial �rst population provides ∼ 10% of the Pareto
front, which is considerable, after what no clear trend is visible compared to the stochastic initial
selection.

The performance of each individual of the populations for stochastic and computed initial
selections are represented respectively on Figure 8 a) and b), intentionally drawn with identical
axis' bounds. Although the Pareto values are similar in the range of 7 ∼ 10 [K] for the comfort
objective, one can see that the overall population is less diverse in the case of a pre-computed
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(a) Stochastic initial population versus pre-selected pairs (b) Percentage of individuals in the Pareto front

Figure 7. Results after 10 generations of 100 individuals.

initial population. In this case the Pareto front extends further to the 'right' of the abscissa, after
∼ 10 [K] but does not reach the best values for objective 2 (cost) attained by the Pareto front
of the stochastic initial selection : the initial selection orientates the algorithm towards optimal
solutions with low numbers of openings.

(a) Stochastic selection of initial population (b) Physically based selection

Figure 8. Pareto fronts for a variable number of openings 2 ≤ n ≤ 20

3.4 Comparison of the test cases

In this section we compare the evolution of the hypervolumes, a metric of the diversity of
solutions, for both �xed and variable number of openings.

In the case of a �xed number of openings Figure 9 a) shows that the computed initial popu-
lation outperforms the stochastic distribution in the �rst generations, after what the di�erence
vanishes. On Figure 9 b) the hypervolume of the stochastic selection is better, especially for
the �rst generations, after what the di�erence tends to reduce. In both cases, the extent of the
hypervolume is matching after 10 generations, meaning a similar share of the solution space is
covered.

4 Conclusion

In this article a novel approach for the determination of the number of windows and their
optimum position on facades was presented. Using the genetic algorithm NSGA-II combined with
seasonal building energy simulations may be computationally expensive, the proposed methodo-
logy hence consists in selecting an initial population based on heuristic considerations, that is :
the couples of openings that have the largest pressure di�erence over the summer season.

Compared to stochastic initial selection, the obtained solutions have a similar degree of
diversity as per the hypervolumes' observation. However, the solutions stemming from the pre-
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(a) Fixed number of openings N = 2. (b) Variable number of openings 2 ≤ N ≤ 20.

Figure 9. Comparison of the hypervolumes' convergence.

computed initial population generally have a lower number of openings : For an identical com-
putational e�ort, the method allows to focus on solutions with a low number of windows.

At the time this article was submitted, the initialisation of the population was only possible for
N = 2 openings. The extension to any number was implemented inbetween and shows promising
results (see the evolution of hypervolumes on Figure 10 a) for N = 10 openings). It will be
included in a future communication.

An example of application is presented on Figure 10 b), exhibiting the position of each
ensemble of optimal position on the facade of Strasbourg's train station, showing graphically the
diversity of the facade elements.
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