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RESUME. Caractériser la performance thermique d’un bâtiment à partir de mesures in situ
nécessite de pouvoir détecter les cas de non identifiabilité, i.e. indétermination des résultats. Si
l’approche bayésienne s’affranchit de l’impossibilité numérique d’estimer cette performance, elle
ne permet pas en soi de détecter des mesures insuffisantes pour l’apprentissage des propriétés
recherchées. Or si les données sont peu informatives, comme quand l’échantillonnage temporel est
inadapté, l’interprétation physique des résultats est compromise. Cet article se propose de mesurer
l’apprentissage de la vraisemblance par les données au moyen de la divergence de Kullback-Leibler.
Un cas d’étude montre l’usage de cette métrique en comparant l’apprentissage d’un modèle RC
par un même jeu de données rééchantillonné à des pas de temps de 8 à 120 minutes. Les résultats
suggèrent des pas de temps de moins de 30 minutes pour un apprentissage plus quantitatif.

MOTS-CLEFS. Identifiabilité pratique, Calibration bayésienne, Granularité temporelle

ABSTRACT. Upon estimating the thermal performance of a building from in situ measurements,
non identifiability cases, i.e. undetermination of the results, must be efficiently uncovered. If a
Bayesian approach is not concerned by the numerical issues raised by non identifiability, it does
not indicate when there is no learning from the data. Yet, if the data is uninformative, as when
temporal sampling is inappropriate, physical interpretation of the results is compromised. This
paper proposes to measure learning from the likelihood, i.e. learning from the data only, by the
means of a Kullback-Leibler divergence. A case study applies this metric to compare learning of
an RC model from a single dataset resampled with time steps from 8 to 120 minutes. Results
suggest time steps shorter than 30 minutes quantitatively enhance learning.
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1 Introduction

Accurate thermal diagnosis of buildings is a key to drive adapted retrofit strategies, necessary
to reduce the energy use of the built environment. Diagnoses from in-situ non destructive
measurements have recently gained a strong interest as they deliver insight on the actual thermal
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performance of the building.
Methods using RC thermal models and relying on controlled indoor conditions have been

proven to be efficient (Madsen et al., 2015). By optimizing the heating input and taking advantage
of the dynamic nature of the data, datasets of only a few days are sufficient to infer an estimation
of the thermal performance. Success and accuracy of the numerical estimation will however be
conditioned by the practical identifiability of the model : the ability of the model to infer unique
solutions given some data. Practical identifiability is therefore a property that depends on both
the model and the quality of information in the data.

The Bayesian approach presents then the advantage of directly accounting for existing expert
knowledge of the system in the numerical resolution. It acts as a regularization of the inverse
problem. Model parameters carry therefore in any case the prior information : there cannot be
undefined parameters. But then, is it still possible to detect uninformative data ?

This paper proposes to measure the information solely gained from the data in a Bayesian
calibration by the Kullback-Leibler divergence. In the perspective of thermal performance
estimation, this metric is applied to assess the loss of information when data is inadequately
sampled, from a temporal point of view.

2 The Bayesian approach to model identification

The estimation of a building thermal property requires three things : data, an appropriate
thermal model and a numerical tool to infer the property of interest. The latter can be approached
in a frequentist or a Bayesian way.

The Bayesian approach considers the unknown model parameters not as scalars but as random
variables. Each parameter has then a probability density function : admissible values of that
parameter are given a probability density. The probability density function of a parameter can
be interpreted as the degree of knowledge of the true value of said parameter (Tarantola, 2005).
With θ a parameter, the degree of knowledge is conditioned by prior information p(θ) an expert
might have and by data purposely collected y. In the end, a parameter estimation in a Bayesian
approach is merely estimating the probability density of θ given y. According to Bayes rule,
equation (1) follows : the posterior distribution p(θ|y) is proportional to the prior knowledge
p(θ) and to the likelihood p(y|θ). The likelihood represents the information gained from the data
y.

p(θ|y) = p(y|θ)P (θ)
p(y)

∝ p(y|θ)P (θ) (1)
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Figure 1. Bayesian calibration with the pySIP package (Raillon et al., 2019). (Left) : 4 independent
chains of 1000 samples are drawn from the posterior distribution of each parameter of the calibrated
model. (Right) : each chain constitutes an estimation of the posterior distribution.

The posterior distribution of a parameter is not analytically computable. It is therefore
necessary to make a numerical estimation of it. To do so, an appropriate algorithm, such
as Hamiltonian Monte-Carlo, draws samples from the posterior distribution (Tarantola, 2005;
Betancourt, 2017). As shown in Fig. 1, with a sufficient number of draws (here the last 1000 out
of 2000 iterations), the shape of the posterior distribution can be reconstructed. Good practice
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requires to produce independently 4 chains of iterations. When all 4 are significantly similar, as
in the left hand side of Fig. 1, the estimation of the posterior distribution may be considered
satisfactory.

3 Practical identifiability in a Bayesian framework

Fundamentally, Bayesian identifiability is not strictly speaking an issue : a Bayesian analysis
with proper prior knowledge is always feasible. If there is no learning from the data, i.e. from
the likelihood, prior and posterior distribution will be identical (Poirier, 1998). In this sense,
identifiability in a Bayesian framework is actually a matter of learning from the likelihood (Xie
et Carlin, 2006).

Considering θ = (θ1, θ2) a set of parameters, Dawid (1979) proposes a formal definition : the
subset θ2 is not identified by the data if the observation of the data does not increase our prior
knowledge about θ2 given θ1 :

p(θ2|θ1, y) = p(θ2|θ1) (2)

Sahu et Gelfand (1999) bring the definition of equation (2) into discussion and underline
that it does not imply that there is no Bayesian learning (i.e. it does not imply that p(θ2|y) =
p(θ2)), but just that there is no conditional learning. The authors then propose a looser yet
less formal definition : if "for at least some parameters, the data provides little information" this
subset of parameters are "weakly identified". Provided there were a suitable metric between both
distributions, this definition would read as p(θ2|θ1, y) ≈ p(θ2|θ1).

To this purpose, Xie et Carlin (2006) propose a metric as defined in equation (3) based on
the Kullback-Leibler (KL) divergence,. The KL divergence is a quantity used to measure the
difference between two distributions. Dθ1,y measures how much is left to learn given data y and
is defined as :

Dθ1,y = KL(p(θ2|θ1), p(θ2|y)) =
∫ ∞
−∞

p(θ2|θ1)log
p(θ2|θ1)
p(θ2|y)

dθ2 (3)

Such a metric is in this case analytically not computable, a solution would be to estimate
the divergence by a k-nearest-neighbor distance method from samples of the distribution (Wang
et al., 2009; Hartland, 2018), as illustrated in Fig. 2.
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Figure 2. Illustration of the Kullback Leibler divergence for three posterior distributions : the less
identifiable, the closer the distributions, the lower the KL divergence

Fig. 2 illustrates such application on three synthetic distributions. Their divergence to a
reference "prior" distribution is calculated and displayed in the legend. Divergences close to 0
show similarity between two distributions : that would indicate poor learning from the data.
On the contrary, the larger the divergence, the least resemblance prior and posterior have : that
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would indicate significant learning from the data. Noteworthy, the KL divergence measures the
disagreement in both variance and mode difference.

4 Adequate time step for practical identifiability

A cause for practical non identifiability in the estimation of thermal performance is inadequate
temporal granularity, i.e. too large time steps therefore overlooking high frequency phenomena.

This section proposes to use the Kullback-Leibler divergence to measure the information
gained by a RC model from multiple datasets, each set having a different sampling frequency.
This section lays out the issue of inadequate sampling of data, describes the house used as case
study and shows finally how time steps influence how much the RC model learns from the data.

4.1 Some background on temporal granularity

Because data and models are not dealt with in continuous time but in a discretized form,
RC models may suffer from aliasing. Aliasing happens when two different signals become
indistinguishable when sampled. In indoor temperature measurements, faulty sampling will result
in misreading or ignoring high frequencies significant variations of temperature (Madsen et al.,
2015). Overlooking high frequency temperature variations may then result in practical non
identifiability. RC model calibration should therefore necessarily use datasets with a minimal
sampling frequency of twice the highest frequencies observed in the heat dynamics of the building,
as stated by the Shannon theorem (Madsen, 2008). Madsen et al. (2015) suggest that the sampling
time should ideally be kept under the hour.

This issue also relates to that of the representative characteristic times of the indoor air
temperature behaviour. Sicard et al. (1985) performed a spectral analysis of the response of indoor
air temperature to external solicitations on a numerical study case : outdoor temperature, heat
flux indoor and heat flux on indoor walls. They showed that the indoor air temperature shows
a strong mode at characteristic time 55 h. The value itself is related to the simulated building,
but the order of magnitude is significant. In addition, they show how indoor air temperature has
several significant modes around the characteristic time 0.1 h, corresponding to local heating
of the air and of the surface of neighbouring walls. Although particularly large in magnitude
compared to the others modes, they show that the 55 h mode is not sufficient to make accurate
prediction. Predictions were more accurate when taking the two modes with the lowest frequency
and in addition a higher frequency mode around 10 h−1 (time 0.1 h i.e. 6 min). These high
frequency phenomena suggest then, according to Shannon’s theorem, that the sampling time
step should be maximum 3 minutes. Longer time steps will fail to provide informative data for
2nd and higher order dynamic models.

4.2 Case study and experimental setup

The in-situ data, measured at a 1 minute time step, has been collected in a two storeys
unoccupied house in Le Bourget du Lac (Savoie, France). The house is part of an experimental
platform of 4 different houses, called the INCAS houses. The building envelope of this specific
house is made of traditional shuttered concrete walls. At the time of the experiment, the building
was being renovated. There were no thermal insulation on the vertical walls, but heavy insulation
below the ground floor concrete slab and in the attics.

During the experiment, the heating power is controlled as to follow a Pseudo-Random Binary
Signal (PRBS), as shown in Fig. 3. This type of signal takes two possible values, 100 W or 5600 W
and ressembles a square wave signal with multiple frequencies. A PRBS signal is designed to cover
both high and low frequencies to which a building might be sensitive.

As shown in Fig. 3, 48 h of data is used for the calibration. The outdoor temperature varies
between 13 ◦C and 28 ◦C as is expected at the beginning of September in Le Bourget du Lac.
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Figure 3. Boundary conditions in the IBB house during the PRBS test

The blind shutters were kept closed during the experiment as to limit the influence of the solar
irradiation.

4.3 Calibration and learning from samplings of variable time steps

Even with suitable model structure, inadequate sampling might result in practical non
identifiability : the data is insufficiently informative. In particular with RC models of the 2nd

order and higher, some parameters represent high frequency phenomena (Juricic et al., 2018).
If one or more parameter(s) are practically not identifiable, their physical interpretability is not
guaranteed.

The data collected in the INCAS house serves now as calibration data for the stochastic
second order model shown in equation (4) (model RoRi CwCi Aw). The 1 minute time step
measurements allow to resample the data at will. Time steps from 8 minutes up to 120 minutes
are performed. Each subsequent dataset is used as data for a Bayesian calibration, performed
with the Hamiltonian Monte-Carlo algorithm in the PySIP python package (Raillon et al., 2019).
The estimated covariance of the stochastic term σdω of the model contributes to reflect the model
error onto the parameter estimation uncertainty (Rouchier et al., 2018).
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Fig. 4 shows the posterior distributions of four parameters of the second order model RoRi
CwCi Aw. There are roughly two cases : (1) the parameter has rather similar posterior distributions,
regardless of the time granularity, such as parameterRo (2) posterior distributions seem significantly
different, as in particular for parameter Ci and to a lesser extent Ri and Cw.
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Figure 4. Posterior distributions of parameter Ro, Ri, Cw and Ci from model RoRi CwCi Aw, 48 hour
data on different sampling time steps. The larger the KL-divergence, the more different posterior and
prior distribution, the more the model has learnt from the data.
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Parameter Ro presents distinct prior and posterior distributions. All posterior distributions
looks relatively close. Confirmation is brought by the KL divergences, which show similar order
of magnitudes. This would indicate that, to some extent, the estimation of Ro is insensitive to
sampling with time steps shorter than 120 minutes. Shorter time steps however result in lower
uncertainty in the estimation.

Contrastingly, estimations of parameter Ci or Cw show a different behaviour. Estimations
from time step sampling larger than 15 minutes have significantly lower KL divergences than
short time step samplings. Posterior distributions tend to show much narrower uncertainties
with the 8, 11 and 15 minutes time step samplings, which contrasts with the 90 and 120 minutes
sampling, closer to the prior. This all suggests that parameters Cw and Ci barely learns with low
frequency sampled data.

Parameter Ri too shows a growing KL divergence with shorter time step samplings. The
uncertainties are significantly narrower with the 8, 11 and 15 minutes time step samplings.
There has been however in each estimation learning from the data. The amount of information
gained seems just larger with a short time step sampling. Noteworthy, divergences from 90 and
120 minutes are very large, their posterior distributions are quite spread, and show higher values
than the shorter time steps results. This might be the result of aliasing or also that the data
is clearly insufficient for this second order model calibration. Model selection validation would
make the latter clear and must in any case be performed (Madsen et al., 2015).

5 Discussion and conclusions

This paper has proposed a metric of similarity between the prior and the posterior distributions
to assess the information solely gained from data in a Bayesian calibration. As an illustration of
its use, the metric has been applied to assess the impact of different time granularity in the data.

An obvious criticism of using the KL divergence for that purpose is that the metric just
measures the difference between two distributions. If the prior had been correctly guessed, very
likely by pure and random chance or because there was high prior expert knowledge, the low
KL divergence is not a sign of non identifiability. This means that no additional information was
gained from the data, as the prior was already significantly informative. In this sense, the KL
divergence is not an indicator of practical identifiability but indeed an indicator of additional
information gained from the data alone. Interestingly, the KL divergences are not dependant on
the order of magnitude of the parameters. Whether of order 106 or 10−3, the metric seems to be
consistent. This aspect is an argument in favour.

All in all, estimating the KL divergence could be used as a warning sign, provided the model
had passed basic model selection. Indeed, a practically non identifiable parameter will result in a
null KL divergence but a null KL divergence merely indicates no learning from the data. To waive
the doubt, a second Bayesian calibration could be performed with less informative priors, in which
case a practically non identifiable parameter would still yield null divergence. In practice, there
is however little chance that a posterior distribution be randomly correctly guessed beforehand.
It would mean that there were already high information about the parameter and that the data
is ineffective to provide better knowledge about its value, which in itself is valuable insight into
the data provided.

Now focusing on adequate time granularity, the results of Fig. 4 suggested that a sampling
time lower than 15 minutes is preferable to reach practical identifiability of all parameters of the
RoRi CwCi Aw model. This time granularity is larger than what was suggested in the work of
Sicard et al. (1985), but is not surprising as adequate sampling dependent on the case study.
It should still be inferred that the sampling time is fundamentally dependent on the thermal
properties of the building under study but also that the risk of practical non identifiability grows
with sampling of large time steps. Let us also underline the following. When shorter time step
samplings imply better learning for parameters representing high frequency phenomena (Ri or
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Ci), it is not detrimental to identifiability of parameters representing low frequency phenomena
(Ro or to a lesser extent Cw).

Applying a similar experiment in buildings with different envelope structures and by
calibrating 1st, 2nd and larger order RC models would certainly contribute to good practice
among practitioners. At the same time, a proper physical interpretability study would bridge the
gap between adequate sampling, adequate thermal models and accuracy to the actual thermal
performance of a building.
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