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Outline

* General background

* Urban climate effects on
— Energy
— Meteorological
— Air quality
— Global cooling
— Comfort

* France focus
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What Is a Heat Island?
Sketch of an Urban Heat-Island Profile
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Effect of Temperature Rise on
Southern California Edison Peak Load (1988)
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Effect of temperature rise on utility peak load
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Electric Power at 3 pm (GW)
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a) Southern Califonia Edison Company (SCE)
2002 system-wide load
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55 (LADWP) 2002 system-wide load
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Japan: High temperatures cause peak

demand

Source: Hiroji Ohta, FEPC Chairman, 10 September 1999

Correlation Ratio between Peak load and Temperature
for 10 Japanese Cities
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Effect of temperature rise on
peak ozone concentration

Ozone concentration measured at
Los Angeles, W Flint Street, 2002
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Temperature rise of various

materials in sunlight
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Strategies

Effects of heat island
countermeasures

Cooler Roofs
Shade Trees

Cooler Roofs

Cooler
Pavements
All Vegetation

Cooler Urban
Surface
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Energy

Buildings
— EnergyPlus, DOE-2, TRANSYS, ...
— New algorithms

Transportation

Industry
Infrastructure
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Demonstration of Cool Roofs in 3 Commercial Buildings
Kaiser Permanente medical office
building, Davis CA
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Demonstration of Cool Roofs in 3 Commercial Buildings

Kaiser Permanente rooftop




© Hashem Akbari

Demonstration of Cool Roofs in 3 Commercial Buildings

Roof-coating edge Infra-Red image

Fresh white
coating
dark
seams .
~ «——— uncoated
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Demonstration of Cool Roofs in 3 Commercial Buildings

Air-conditioning savings

Monitored Normalized Estimated
kWh/day | post kWh/day savings
pre | post for pre T, A kWh/day | %
Davis 1094 | 915 89615 198+15 18+1
Gilroy 675 | 658 589+7 86+7 13x1
San Jose | 713 | 730 700+6 13+6 2+1
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Cool roof saves 10%-20%
air-conditioning for area under the roof

Middle East
China

India (Hyderabad
demos; see graph at
right)
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Cooling vs. heating: Rule of thumb
Anywhere in the world, if you need cooling in summer

— A cool roof saves you money
— The heating penalty is less than 30% of cooling energy saving

If you do not have cooling and summer comfort is not
an issue, cool roofs will not save you money

If you are considering buying AC, first consider a cool
roof

A cool roof may result in a down-size in air-handling
units and actually save you electricity in heating
season

Cool roofs also cool the globe

17



Why winter heating penalties are low?

* Days are shorter
* Sun angle on a roof is lower
e Sky is cloudier

* Most heating happens in the early morning
or evening hours, when there is no Sun

* Roofs are covered by snow

© Hashem Akbari
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Cool roofs in cold climates: Annual cool roof savings ($/100m?roof) for
new buildings with gas-heating systems
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Meteorology and O, air quality: Basics

green: LBNL innovation/new contribution
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Modeling tools

 Meteorological
— Colorado State University Mesoscale Model (CSUMM/SAIMM)

— PSU/NCAR MM5 modeling system

— WRF
— San Jose State University URBMET-TVM

— Other models, e.g. canopy-layer models

e Photochemical
— Urban Airshed Model (UAM)

— WRF-Chem

— MAQSIP/EDSS modeling system

— CIT (Caltech) airshed model
— Others, e.g. Elfin, emissions pre-processors, EMFAC, DTIM

21
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Meteorological models

Conservation relations

%’to =—(V-pV) (mass)

— = -V-VO+S, (potential temp erature)
a_V=_V~VV—le—gk—2QxV (momentum)
Z g

oq -

E =-V-Vg+§, (water vapor)

Surface energy balance L
(1-a)K | +L = PCW O +pL,wq +G
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Photochemical models

dac. - -
i +V-(uc)=V-(KVe)+ R +S, +D
Si=E;,xA (source term)

D, =c xV, (depositionterm)

R = ~200—= ~ 80reactions (CB-4)

(transformation term)
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Simulated air temperature difference:
Adding 11 M trees

Los Angeles, 3 p.m., August 28

E-z.o
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Simulated meteorology and
air-quality impacts in LA

Temperature
Change

Ozone
Concentration =
Cha nge e

25
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UAM- generated [O,] peak
isopleths (for 1-2°C decrease)

Sacramento S p.m. July 13
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Urban climate
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The role of urban canopy models

y

Slab model
v Chen and Dudhia (2001)

Chen F., et al.,
2011.

Single-layer
v Kusaka et al. (2001, 2004)

Multi-Layer
v Martilli et al. (2002)
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The role of building energy models

Offline
Taha et al. (1988)
Taha (1997)
Akbari et al. (2001)
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Questions to answer

How to execute urban climate simulations
using fine-resolution grids?

What are the morphological parameters?

How increasing the albedo and vegetation
works?

How much energy is saved in buildings?

What is the effect on air quality by considering
the heat emission from buildings?

What is the effect on comfort?

31



© Hashem Akbari

Simulation tool

 Weather Research and Forecasting (WRF)
— Grid size from meters to thousands of kilometers
— Nesting
— Urban parameterization
— Building energy model
— Online coupling with chemistry

32



Weather Research and Forecasting model:
WRF

External WRF Post-
Data Source  Te-Processing WRF Model Processing &
System Visualization
-............: / \
WRF : , ,
Terresirial  [€5— Terrain, albedo, land use, vegetation, roughness, etc.
Data

Chemistry

Il EEN

Gridded Data:
NAM, GFS,
RUC, NNRP,

AGRMET(soil

Simulation domains, Interpolating terrestrial and \
weather data

Biogenic emission

Temperature, pressure, relative humidity, wind, etc.

EEE N EEESNEEEEEEEEEEEEEEEEEEENEER

emission

Anthropogenic
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Physical models in WRF

Microphysics
Cumulus ‘\yv q>
Land-surface r \ \
Planetary boundary layer
Atmospheric radiation
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Modifications to heat flux

* Modifying the view factor and multi-reflection
in urban canopy model

* Modifying the heat emission from buildings

r Hout + Eout .
Ee = COP for cooling
< E — Hout + Eout
‘ n for heating
;QC =E.(COP,,,, +1) for cool.ing
\ Oc =n.E. for heating

35
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Choice of urban canopy model:
Effect of turbulence on heat flux

(a) ML-UCM and sl

ab model (ML-slab),

Y T e

4 : A
A‘/

(b) ML-UCM and SL-UCM (ML-SL)

(0] 10 20 30 40 650

36




Urban morphology
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A new parameterization for SVF

e 2D canopy with variable height of buildings
SVF'=SVF+2A¢ — A,

SVF: sky view factor of 2D
urban canopy

As: frontal area density

A,: plan area density
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Monthly Typical Meteorological
Day (MTMD)

Meteorological parameters

MTMD,;, = min{g;}

39
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Montreal example: Scenarios

CTRL
All surfaces have the albedo of 0.2

ALBEDO
Roof - 0.65
Walls - 0.60

Street - 0.45

40
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Temperature (ALBEDO-CTRL) @ 3pm
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Difference in total energy of HVAC
systems (ALBEDO-CTRL) [W/m?]

* The difference in energy consumption of
HVAC systems is only noticeable in summer

July August

-3 24 -18 12 -6 .00 6 1.2 18 24 3

42
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Air quality: Simulation domain and episode

WRF-CHEM coupled to ML-UCM and BEM

* Three consecutive days in July- 2005 (10t to 12t
|ST) with highest hourly maximum temperature

* Domain 1: 51x51 grids, grid sizes of 9 x 9 km
 Domain 2: 52x52 grids, grid sizes of 3 x 3 km

 Domain 3: 91x67 grids, grid sizes of 1 x 1 km

 The National Emission Inventory of 2005 (NEI-05)
of the US-EPA

43
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Air temperature ("C)
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Energy consumption of HVAC
systems (W/m?)
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O =

10/07/2005 11/07/2005 12/07/2005

.l......—‘—‘.... .....—.—‘—‘-.l_l_._l_l_l_l_‘_.. ._._‘_.._._._._'_'_._._._.
o0 0

Energy consumption (W/m?)

© Hashem Akbari

Q Q Q Q Q
. / A A ! Q Q Q Q Q A

CTRL °°° DIFF




Ozone concentration (ppbv)
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“==Rural “=Urban °°°Rural (ALBEDO-CTRL) °°*Urban (ALBEDO-CTRL)
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PM, . concentration (ug/m?)
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Urban vegetation: Effects on
energy and air-quality

Shading of buildings
Evaporative cooling

Wind shielding

Smog reduction

PM10 deposition

Dry deposition

Direct carbon sequestration

48
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Other measures

Roof gardens

Green walls

Anthropogenic heat reduction
District cooling

Outdoor evaporative cooling
Energy efficient community design

49
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Roof gardens

Energy benefits similar to cool roofs

Dirt on rooftops provides additional insulation:
good for winter, not so good for summer

Provides gardens to enjoy

Design is complicated

May cost significantly more than cool roofs
Better suited for low-sloped roofs
Potentially higher maintenance cost

An expensive option in arid climates
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Roof gardens

Energy benefits similar to cool roofs

Dirt on rooftops provides additional insulation:
good for winter, not so good for summer

Provides gardens to enjoy

Design is complicated

May cost significantly more than cool roofs
Better suited for low-sloped roofs
Potentially higher maintenance cost

An expensive option in arid climates
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Cool surfaces also cool the globe

* Cool roofs, cool pavements, and shade trees
save energy, improve air quality, and improve
comfort; we estimate savings of > S50B/year

e Reflective roofs and pavements also directly
cool the globe, independent of avoided CO,

Geo-engineering 101

52
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CO, offset: Methodology

* Changing albedo of urban surfaces and
changing atmospheric CO, concentration both
result in a change in radiative forcing (RF)

 Comparing these two radiative forcing relates
changes in solar reflectance of urban surfaces
to the changes in atmospheric CO,
concentration

53
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The Earth’s radiation budget

Reflected Solar Incoming QOutgoing
107\ Radiation 342 Solar Longwave
107 W m2 Radiation Hadiatiﬂrh
342 W m™ 235 W m’
Reflected by Clouds,
Aerosol and v ’
Atmosphere Emitted by Atmospheric
77 Atmosphere 165 Window
\ Absorbed by Gre{fnhcuse
~ 67 Atmosphere 288
24 (78
% l"::‘ lllll:ll f
" 324
\y .
Reflected by E *\“x 350 Back
Surface . Radiation
30 —
[ 390
108 1 24 78 Surface
Absorbed by Surface  Thermals Evapo- Radiation 324 |

transpiration Absorbed by Surfac‘E‘--\__‘_‘

Source: Kiehl and Trenberth, 1997
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Simulation model: University of Victoria
Earth System Climate Model (UVic ESCM)

An intermediate complexity global climate model which includes an
interactive global carbon cycle.
Atmospheric component of UVic ESCM is a vertically-integrated (2-D)

atmospheric energy and moisture balance model, with specified wind
fields that enable horizontal advection of heat and water

Ocean is a 3-D general circulation model, coupled to a dynamic/
thermodynamic sea ice model

Carbon cycle component includes dynamic vegetation on land, land
carbon exchange via photosynthesis and decomposition, inorganic
ocean carbon cycling, and ocean biological carbon uptake

55
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Simulation model: University of Victoria
Earth System Climate Model (UVic ESCM)

As a computationally efficient global climate model, UVic ESCM is
well suited to simulate the decadal- to centennial-scale climate
response to greenhouse gas emissions, and has also been used as an
effective tool to assess the climate response to solar radiation
management

Owing to the reduced complexity of the atmospheric component of
the UVic ESCM, cloud feedbacks are not included, and the albedo of
the atmosphere remains constant over time

As a spatially-explicit model with reduced atmospheric variability,
this model is well suited to assess the climate response of small and
spatially-variable forcing associated with urban surface albedo
modification.

56
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Simulation scenarios

e Simulations began from a multi-thousand year spin up of the
model under preindustrial conditions (zero anthropogenic
forcing; CO, concentrations set to 280 ppm)

 We integrated the model forward to present day, driven by
observed increases in atmospheric CO, concentrations

* After the year 2010, we allow atmospheric CO,
concentrations in the model to vary interactively as a
function of prescribed anthropogenic emissions, and
simulated land and ocean carbon sinks.

57



Simulation scenarios

* For the period from 2010 to 2300, we used two
CO, emission scenarios: | ™

— a “business-as-usual” (BAU) Ny
emission scenario, where CO, /\
emissions increased dramatically EEE T
to the year 2100, and then decreased linearly to zero
at the year 2300 (resulting in total cumulative
emissions of close to 5000 GtC or 18500 Gt CO,)

— an “aggressive mitigation” (AgMit) scenario, in which
CO, emissions peaked around the year 2025 and
decreased to zero at the year 2100 (resulting in total
cumulative emission of 1000 GtC or 3700 Gt CO,)

58
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Simulation scenarios

“Basecase” simulations: represent the climate

response to these two CO, simulations in the
absence of any land-surface albedo modification

* Albedo change simulations beginning at year

© Hashem Akbari

2010

— “Case20”: increased surface albedo by 0.1 over all
land areas between +£20 latitude (26.5% of land area)

— “Case 45”: increased surface albedo by 0.1 over all
land areas between %45 latitude (61.9% of land area)

— Urban areas: increased urban albedo by 0.1 using
GRUMP and MODIS estimate of urban areas

59
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Atmospheric surface temperature difference as a
result of increasing the surface albedo of land
areas by 0.1 between + 45 degrees latitude
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Global temperature change and equivalent CO,

emissions offset per m? per albedo increase of 0.01
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increasing albedo of 1 m? of a surface by 0.01 decreases the long-term

global temperature by ~ 3x10-"° K, offsetting 6.5-7.5 kg of CO, emissions
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MODIS and GRUMP datasets of urban areas

Urban Datasets used in UVicESCM scenarios
Modis 500 Urban Dataset

Urban/Land Area Ratio

0.0 0.2 04 0.5 0.7 0.
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MODIS
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Atmospheric temperature difference by
increasing albedo of urban areas by 0.1
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Global temperature change and equivalent CO, emissions
offset by changing the albedo of urban areas by 0.1
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CO, offset of cool roofs and pavements

* Low-sloped roofs

— A albedo for aged white roofs = 0.40
— Emitted CO, offset for white roofs = -280 kg CO,/m?
— It takes about 4 m? of white roof to offset 1 T CO, emitted

* Sloped roofs

— A albedo for typical residential and non-residential cool roofs = 0.25
— Emitted CO, offset for cool roofs = -170 kg CO,/m?

* Pavements

— A albedo for cool pavement = 0.15
— Emitted CO, offset for cool pavements = -100 kg CO,/m?

Source: Akbari et al, 2012
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World-wide CO, offset of cool roofs and pavements

e Typical urban area is 25% roof and 35% paved surfaces
* World-wide urban areas = 1.5x102 m?(1.5 M km?)

* World-wide roof area = 3.8x10'! m2(0.38 M km?)

* World-wide paved area = 5.3x10'! m?(0.53 M km?)

* Emitted CO, offset for cool roofs = 67 GT CO,

* Emitted CO, offset for cool pavements = 56 GT CO,

* Total for cool roofs and cool pavements = 123 GT CO,

* Note:
— Akbari et al (2009) estimate 44 GT CO,
— Menon, Akbari et al (2010) estimate 57 GT CO,
— Akbari and Matthews (2010) estimate 78 GT CO,
— Akbari et al (2012) estimate 150 GT CO,
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CO, offset of cool roofs and pavements

* 44-150 GT CO, is over 1-4 years of the world 2025

emission of 37 GT CO,

* At agrowth rate of 1.5% in the world’s CO, -

equivalent emission rate, 44-150 GT CO, would
offset the effect of the growth in CO,-equivalent
emissions for 11-25 years

* Would offset emissions from all cars for 18-60 years
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Value of CO, offset

* CO, emissions currently trade at ~$25/tonne

e 44-150 GT worth $1100B-537008B, for changing
albedo of roofs and paved surfaces

* Cooler roofs also save air conditioning (and
provide comfort) and improve air quality
worth over S5000B over the next 100 years
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Comfort: ENVI-met simulations of Montreal

Step 1: Step 2:

eSelect the 300m*300m area *Build 300m*300m domain with 3m*3m*3m
eSketch the layout of buildings and trees resolution

eCount floor numbers using 3D map eDefined each grid of building area, building

height, soil, hard surface, and trees
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Urban environmental simulation (ENVI-met)

ENVI-met is a three-dimensional microclimate model
designed to simulate the surface—plant—air interactions
in urban environments.

It has a typical spatial resolution of 0.5 to 10 m, and a
temporal resolution of 10 s.

A simulation is typically carried out for at least 6 h
(usually for 24-48 h).

The optimal time to start a simulation is at night or
sunrise, so that the simulation can follow the
atmospheric processes.

Typical areas of application are Urban Climatology,
Architecture, Building Design or Environmental
Planning.

Source: http://www.envi-met.com/
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Urban environmental simulation (ENVI-met)

Input data ENVI-met Basedata Simulation Output Data
Global Databases
Main Configuration File and Settings >| Main 3D Output Files:
(.CF) ..AT...: Atmosphere
N Plant Database > > ..FX...:Surface & Fluxes
S| (PLANTS.DAT) ..SO...: Soil
Area Input File « Soil Profiles
(.IN) i (PROFILS.DAT) —>| 1D-Inflow Profile |
definees
* Buildings \ 4
* Plants Soils Database \ «| Receptor 1D- Output
* Soils (SOILS.DAT) - - * Time Series Files
* Sources * Snapshot Files
* Receptors
>! Sources Database
Simulation Files —>| (SOURCES.DAT) —> —>| Data link to BOTworld
Simulatiion specific databases
* Plants
* Sources —
adding to global databases — ENVI-met
Model
Additional databases V3.1

Source: Data flow in ENVI-met V3.1 (http://www.envi-met.com/)



The effect of Sky View Factor

N
\o]
N
[y

R=0.63 —_ R=-0.65
G285 - G 205 - — i
S. £
|-
3 3
+ 275 5 19.5 -
O o
8 27 S 19 1
£
2 265 > 185 -
= =
< 26 < 18 -
25.5 17.5 , . l _lam
0 0.2 0.4 0.6 0.8 1
SVF
Midday Midnight

The effect of SVF (x-axis) on air temperature. The data is from the receptors at 1.5 m
above the ground at noon (12 pm, 22 July) and 4 hours after sunset on a typical day in summer
(1 am, 23 July). R=correlation coefficient.
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The effect of Sky View Factor
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Urban ground surface temperature

Details of ground surface materials

Albedo |Heat Capacity [Jm‘3K'1]*1O6 Heat Conductivity [Wm K™

Asphalt road 0.2 2.251 0.90
Granite pavement 0.4 2.345 4.61

w S
w o

w
o

N
o

=
(94}

Ground Surface Temperature (°C)
N
(9]

=
o

5 8 11 14 17 20 23 02 05

—Asphalt ——Granite
Comparison of ground surface temperature on a typical summer day (from 5 am, 22 July,

to 2 am the next day) with two ground surface materials.
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The effect of urban ground surface
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Case for France: Pavements
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White roofs in Corse; source: google
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Modeling in support of policy:
Research elements

* Perform detailed analysis (Energy and AQ
effects)

— Regional climate
— AQ modelling: Pollution transport

* Develop detailed land use databases

* Develop implementation programs (roofs,
pavements, trees)
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Implementation focus

Tall buildings
e Cool roofs

— Cool roofing materials

— Roof gardens

* Cool walls
— Green walls
— Cool wall materials
— Shades

* Cool pavements

Urban parks?
Street misters?

Low-rise buildings
 Cool roofs

— Cool roofing materials

— Roof gardens?

e Cool walls
— Cool wall materials
— Shades

— Green walls?
e Shade trees
* Cool pavements
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In place of conclusions

Why modelling: In support of policy?

What we know, what we do not know, and
what we would like to know

Modelling and measurements

When have we done enough modelling?
Still much to learn

Applying what is learnt
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Singapore conference 30 May to 1 June 2016

School of Design
& Environment

TINUS
%%

National University
of Singapore

invites you to the

COUNTERMEASURES

to URBAN HEAT ISLANDS
30-31 MAY e« 1 JUNE 2016

STEPHEN RIADY CENTRE
UNIVERSITY TOWN, NUS

29/10/15

COUNTERING URBAN HEAT ISLAND (UHI)
AND CLIMATE CHANGE THROUGH

MITIGATION AND ADAPTATION

The Fourth International Conference on Countermeasures to
Urban Heat Islands (4™ IC2UH]I), will be devoted to the science,
engineering and public policies to help relieve the excess heat

and air pollution of Summers in hot cities. It has long been
recognized that the excessive heat and smog in many cities in
the Summer, the “Urban Heat Island”, is partly due to the
choices of building materials, vegetation and urban design.

Scientists, engineers, builders, architects, and government
officials, especially, but not limited to Asia Pacific countries,
concerned with improving the urban environment are urged to
participate in 4" |C2UHI which promises to advance the field.

http://www.ic2uhi2016.org/
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100m? of a white roof, replacing a dark
roof, offset 10-20 tonnes of CO, emissions

STAPLES Center ™

N\ N\
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