

UNITED KINGDOM · CHINA · MALAYSIA

Stochastic modelling of occupants' presence, activities and electrical appliance use: No-MASS

- Jacob Chapman
- Peer-Olaf Siebers
- Darren Robinson
- The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

The Performance Gap

- Deviations between predicted and real world performance
 - Uncertainties of model/ algorithms
 - Climate
 - Occupants
- Lead to stochastic models of behaviour
- Generic method integrating them
- Coupled with performance building simulation

Jacob.Chapman@nottingham.ac.uk

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Stochasticity in peoples' behaviours

- Peoples' decisions depend on both deterministic and random responses to stimuli: they are stochastic in nature.
- The same occupant may respond differently, on different occasions, even in response to identical stimuli.
- We may also encounter considerable differences in response between individuals to identical stimuli.
- This randomness can have significant implications for comfort and for buildings' **energy** and other resource demands.

th 27

October 2015

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Stochastic simulation

We want **stochastic** models that will account for:

- the **variety of behaviours** (investments, occupants' presence and activities, appliance use, comfort adaptations: personal & envelope)
- the variation over time of these behaviours,
- the variation between individuals of these behaviours.

UNITED KINGDOM · CHINA · MALAYSIA

Stochastic simulation

We want **stochastic** models that will account for:

- the **variety of behaviours** (investments, occupants' presence and activities, appliance use, comfort adaptations: personal & envelope)
- the variation over time of these behaviours,
- the variation between individuals of these behaviours.

To provide more precise **inputs** to our simulations.

- More **robust** renovation and design solutions.
- Better **load profiles** for the **sizing and control** of energy conversion systems and supply networks: building-embedded and district-wide.
- Better **energy use** and **comfort** prediction.

UNITED KINGDOM · CHINA · MALAYSIA

Current approaches to behavioural modelling

Deterministic representions:

- Time schedules (e.g. for occupation and use of lights & appliances)
- Simple rules (e.g. for blinds and windows)

Current approaches to behavioural modelling

Deterministic representions:

- Time schedules (e.g. for occupation and use of lights & appliances)
- Simple rules (e.g. for blinds and windows)

Stochastic representations:

- Derivatives of simple logistic regression models (Bernoulli process)
- Directly embedded into dynamic simulation programs

Jacob Chapman

Current approaches to behavioural modelling

Deterministic representions:

- Time schedules (e.g. for occupation and use of lights & appliances)
- Simple rules (e.g. for blinds and windows)

Stochastic representations:

- Derivatives of simple logistic regression models (Bernoulli process)
- Directly embedded into dynamic simulation programs

These methods lack generality and extensibility

Jacob Chapman

Aims

 Improve simulated building performance in response to agents' stochastic decisions

Objectives

- Present a framework for the integration of stochastic models
- Be able to assign archetypes to an agent template
- Integrate framework within a building simulation environment

Framework

Jacob Chapman

Diversity Between Agents

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Diversity Between Agents

age	<36	36-59	>=59
family	with child	with teenager	
married	TRUE	FALSE	
day	Monday	Tuesday	
season	Summer	Spring	
gender	male	female	
employed	TRUE	FALSE	
computer	TRUE	FALSE	
retired	TRUE	FALSE	
education	<	middel school	<

Jacob Chapman

27 October 2015

Activities

- Agent State
- Location

Jacob Chapman Jacob.Chapman@nottingham.ac.uk

UNITED KINGDOM · CHINA · MALAYSIA

Diversity Between Agents

Retired

Not Retired

Jacob Chapman

Presence

Jacob Chapman

Faculty of Engineering, University of Nottingham, UK.

- Three modelling tools:
 - Bernoulli process

UNITED KINGDOM · CHINA · MALAYSIA

Jacob Chapman

Faculty of Engineering, University of Nottingham, UK.

- Three modelling tools:
 - Bernoulli process
 - Discrete time random process: Markov chain

UNITED KINGDOM · CHINA · MALAYSIA

Jacob Chapman

Faculty of Engineering, University of Nottingham, UK.

- Three modelling tools:
 - Bernoulli process
 - Discrete time random process: Markov chain
 - Continuous time random process: Survival analysis

• Applying:

Jacob Chapman

The University of

UNITED KINGDOM · CHINA · MALAYSIA

Nottingham

Faculty of Engineering, University of Nottingham, UK.

- Three modelling tools:
 - Bernoulli process
 - Discrete time random process: Markov chain
 - Continuous time random process: Survival analysis

- Applying:
 - Cluster analysis and/or Forward selection
 - k-fold cross validation

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Short-term **Presence** profile: $P_{ii}(t)$

Page, Robinson, Morel and Scartezzini, Energy & Buildings 40(2), 2008 (5th most cited paper: 2008-13)

Jacob Chapman

27th October 2015

Appliance

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Electrical appliances ownership

	Model	TPR	FPR	ACC	AUC	Dxy
1	w'machine	0.890	0.738	0.881	0.819	0.638
2	ťdryer	0.917	0.711	0.720	0.717	0.434
3	dishwasher	0.879	0.540	0.743	0.785	0.570
	s'instant	0.845	0.625	0.702	0.609	0.218
5	s'pumped	0.273	0.115	0.704	0.607	0.214
6	c'relectric	0.919	0.742	0.762	0.621	0.242
	el'heater	0.134	0.041	0.710	0.663	0.326
8	freezer	0.615	0.393	0.611	0.650	0.300
9	w'pump	0.270	0.065	0.805	0.678	0.356
10	immersion	0.918	0.721	0.772	0.614	0.228
	tvless21	0.906	0.813	0.660	0.593	0.186
	tvmore21	0.914	0.530	0.846	0.721	0.442
	desktop	0.801	0.386	0.703	0.773	0.546
	laptop	0.827	0.314	0.763	0.820	0.640
15	g'console	0.614	0.132	0.781	0.701	0.402
					4	h

Jacob Chapman

27^{tri} October 2015

UNITED KINGDOM · CHINA · MALAYSIA

Activity-dependent appliance modelling

Following appliance assignment, model its use:

$logit(P_a(t)) = \alpha_{a0} + \beta_{aj} logit(P_j(t))$

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Activity-dependent appliance modelling

Following appliance assignment, model its use:

$logit(P_a(t)) = \alpha_{a0} + \beta_{aj} logit(P_j(t))$

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Activity-dependent appliance modelling

Following appliance assignment, model its use:

$logit(P_a(t)) = \alpha_{a0} + \beta_{aj} logit(P_j(t))$

27th

October 2015

Following appliance assignment, model its use:

$logit(P_a(t)) = \alpha_{a0} + \beta_{aj} logit(P_j(t))$

Building Environment

- EnergyPlus
- Uses FMI
- Can be coupled with other tools

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

FMI - Functional Mockup Interface

- Generic programming interface
- Allows for a Co-Simulation environment
- XML defines the schema of coupling
- C++ arrays to pass data
- Timestep intervals
- Readily Available in EnergyPlus and other simulation tools
- Portable

Jacob Chapman

States

Timestep

 Set parameters

UNITED KINGDOM · CHINA · MALAYSIA

Occupant States - House

Jacob Chapman

Occupant States -House Sub States

Jacob.Chapman@nottingham.ac.uk

Interactions

- Shades
- Windows
- Lights

Jacob Chapman Jacob.Chapman@nottingham.ac.uk

UNITED KINGDOM · CHINA · MALAYSIA

October 2015

Window openings: P_{ii}(occ), D_i|P(t)=1

Haldi and Robinson, Building and Environment : 44(12), 2009 Best Paper Prize: 2009

UNITED KINGDOM · CHINA · MALAYSIA

Blind position: $P_{ij}(t)$...

Faculty of Engineering, University of Nottingham, UK.

Faculty of Engineering, University of Nottingham, UK.

Faculty of Engineering, University of Nottingham, UK.

Social Interactions

Jacob Chapman Jacob.Chapman@nottingham.ac.uk

UNITED KINGDOM · CHINA · MALAYSIA

Social Interactions

- Assign each agent with a power
- Each agent makes a vote for the action that they want to perform
- The action with the most votes is performed
 - Authoritarian Boss/ Family member
 - Everyone with equal voting power

No-MASS

- » Interactive / reactive / occupants
- » Empirically informed» Diverse

population

Jacob Chapman Jacob.Chapman@nottingham.ac.uk

UNITED KINGDOM · CHINA · MALAYSIA

Case Study

- House and office
- Based in Nottingham, UK and Geneva, Switzerland
- Two agents, profile of adults no children

Jacob Chapman Jacob.Chapman@nottingham.ac.uk

Faculty of Engineering, University of Nottingham, UK.

Mean Convergence

Convergence at 80 simulations

Results

The University of

UNITED KINGDOM · CHINA · MALAYSIA

Nottingham

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Results - Office

Jacob Chapman

27th October 2015

UNITED KINGDOM · CHINA · MALAYSIA

Results - Geneva States

Results - Nottingham States

Jacob.Chapman@nottingham.ac.uk

Jacob Chapman

DesignBuilder

The University of

UNITED KINGDOM · CHINA · MALAYSIA

Nottingham

- Internship
- To integrate the No-MASS platform into design builder
- Allow practitioners to use the new representation of occupants to make informed decisions about how occupants actually use buildings

Faculty of Engineering, University of Nottingham, UK.

UNITED KINGDOM · CHINA · MALAYSIA

Jacob Chapman

27th October 2015

Workshop

- Office construction
- Setting up parameters
- Setup agent simulation
- Analyse results
- House construction
- Setting up parameters
- Setup agent simulation
- Analyse results

UNITED KINGDOM · CHINA · MALAYSIA

Jacob.Chapman@nottingham.ac.uk

Jacob Chapman

UNITED KINGDOM · CHINA · MALAYSIA

Thank You

Jacob Chapman

