

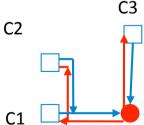
SIMUREX

Porticcio 29 oct. 2015

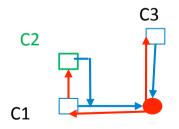
Optimisation de la configuration et du dimensionnement de réseau de chaleur urbain

Théophile MERTZ

Doctorant réseau de chaleur tmertz@nobatek.com

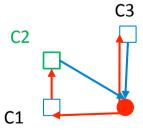

Input:

- Localisation
- Puissance nominale sous-station: 80 kW
- Régime de température des consommateurs 50/70°C + C2 50/30°C
- Cout de la tranchée


Résultats

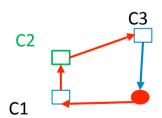
Cas de référence

Conception classique


C2 basse température (BT)

Structure en cascade

→ 0,3 % coût global


C2 BT C_tranchée -50%

Structure en cascade + boucle

 \rightarrow - 1,3 % cout global

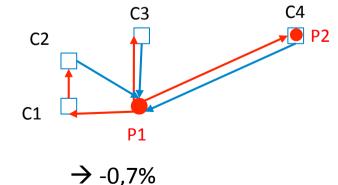
C2 BT + C3 très BT C_tranchée -50%

Structure en cascade + boucle

 \rightarrow - 4,6 % cout global

Input:

- Idem: localisation+ puissance 80 kW + C2 BT
- Nouveauté : P2 peut potentiellement approvisionner C4 (le client isolé)

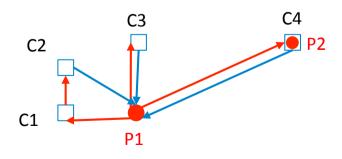

La pression foncière → espace limité en P2 → Pmax

Le coût de la technologie de production decentralisé (k1 \rightarrow P1, k2 \rightarrow P2)

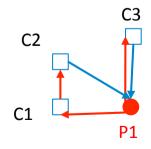
Fossile:

- k2 opex et capex +50%
 - Résultats

Production centralisée (et connexion cascade)


EnR:

- Capex k2 +50%
- Opex k2 -75%
- P2,k2<70kW


- Enr:

capex +50% et opex -25%

Production décentralisée

Production isolée en P2

Merci pour votre attention

