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Towards control in buildings

Objective

control indoor air quality :

I keep a velocity or temperature pro-

file in a room

I evacuate a pollutant

by acting on the intensity and temperature of the injected air or on

external sources

optimize comfort or heating consumption in a design phase

Strategy : formulation as an optimal control problem

minimize the functional J(ϕ,γ) =
1

2

∫ T

0

∫
Ω

(ϕ− ϕ̂)2dΩ dt +
κ

2
γ2

where ϕ can be the velocity, the temperature or the pollutant concentration

ϕ̂ is the target and γ the control parameter

under the constraints of the Navier-Stokes equ.
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Problem statement

incompressible and anisothermal flow subject to gravity g=−gey

based on Boussinesq hypothesis, the pb can be written :
∇ · u = 0

∂u
∂t

+ (u · ∇) u = −∇p +
1

Re
∇2u + Ri θ ey

∂θ

∂t
+ (u · ∇) θ =

1

RePr
∇2θ

we assume that there exists a part of the boundary, denoted Γu

(resp. Γθ), where the velocity (resp. the temp.) can be modified :

u|Γu
= γ1 uΓ(x) θ|Γθ = γ2 θΓ(x)

starting from an initial flow, we want to achieve a temperature θ̂ in

Ωc ⊂ Ω associated to control parameters γ̂

the objective functional is

J (θ,γ) =
1

2

∫ T

0

∫
Ωc

|θ − θ̂|2dΩdt +
1

2

∫
Ωc

|θT − θ̂T |2dΩ +
κ

2
|γ|2
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Associated unconstrained optimization problem

this pb is converted into an unconstrained optimization pb by the

method of Lagrange multipliers

we look for a local minimum to the Lagrange functional :

L(u, p, θ, π, ξ, β,γ) = J (θ̂,γ)−
∫ T

0

〈ζ,N(u, p, θ,γ)〉 dt with ζ = (π, ξ, β)T

assuming that all arguments are independent, a local minimum is

reached if

I
∂L
∂ζ

δζ = 0 → state equations N(u, p, θ,γ) = 0

I
∂L
∂u

δu =
∂L
∂θ

δθ =
∂L
∂p

δp = 0

→ adjoint equations Q(ξ, π, β, u, p, θ,γ) = 0

I
∂L
∂γ

δγ = 0 → the optimality condition ∇γJ(ξ, π, β, u, p, θ,γ)
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Resolution by an iterative descent method

a) initialization of the algorithm : k = 0 and γ(k) = γinit

b) solving the state pb N(u, p, θ,γ(k)) = 0

c) solving the adjoint pb Q(ξ, π, β, u, p, θ,γ(k)) = 0

d) assessment of the descent direction d(k) = −∇γJ(ξ, π, β, u, p, θ,γ(k))

e) assessment of the step ω(k) in the descent direction d (k)

(linear search algorithm of Armijo)

f) update the control parameter γ(k+1) = γ(k) + ω(k)d (k)

g) If J (u,γ(k+1)) ≥ η return to step b.

I many resolutions of the Navier-Stokes and their adjoint equations

I CPU time is very large and great storage capacity is required

A solution ?

using reduced order methods
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Reduced order models

find a reduced basis Φ such that the solution w of the
problem we solve, can be approximated as :

w(x , t) ' wN (x, t) =
N∑

k=1

ak (t)φk (x)

I N << nb of degrees of freedom computed with FV, FE, FD. . .

the time coefficients ak (t) are the solutions of a system of N

differential equations

I obtained by projecting the equ. onto each φk (x)

I solving this system is almost instantaneous.

Many reduction techniques have been developed :

I POD, Balanced Truncation, DMD, SVD, PGD . . .
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POD (Proper Orthogonal Decomposition)

obtain snapshots {w(x , ti )}M
i=1 representing the studied phenomenon,

based on numerical simulations or experiments

seek the determinist functions {φj (x)}m
j=1 that are

the best approx. in average of a set of a large

number of random data {w(x , ti )}M
i=1

is equivalent to solving the maximization problem :

max
φl∈H

<
(
w , φl)2

> avec
(
φi , φl) = δil pour 1 ≤ i ≤ l ≤ m

this leads to solving the eigenvalue problem :(
R(x , x ′), φ(x)

)
= λφ(x) with R(x , x ′) =< w(x , t)w(x ′, t) >
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obtain snapshots {w(x , ti )}M
i=1 representing the studied phenomenon,

based on numerical simulations or experiments

seek the determinist functions {φj (x)}m
j=1 that are

the best approx. in average of a set of a large

number of random data {w(x , ti )}M
i=1

in practice, we solve the following eigenvalues pb (snapshot method)) :

[C ]a = λa with Cki =
1

M

(
w(x ′, tk ),w(x ′, ti )

)
and a = t{a1, . . . , aM}

and the spatial modes are given by

φi (x) =
M∑

k=1

ai
kw(x , tk )
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Properties of the POD basis

the basis POD Φ is optimal in an energetic sense

I any realization of the random field w can be approximated with :

w(x , t) ' wN (x, t) =
N∑

k=1

ak (t)φk (x) with N small

the φn(x) respect the boundary cond. and they are divergence free
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Method illustration (flow in porous media, Re=100, Da=0.0007355)

I Flow sampling

I POD basis and temporal coeff. (eigenvectors of temporal correlation tensor)

a) Mean field b) Mode 1
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

ROM associated to the anisothermal Navier-Stokes equations

velocity and temperature are decomposed as :

u(x, α, t) = ū(x, α) + u′(x, α, t) and θ(x, α, t) = θ̄(x, α) + θ′(x, α, t)

POD decomposition of the fluctuating parts :

u′(x, α, t) ≈
Nu∑
i=1

ai (α, t)Φu
i (x) and θ′(x, α, t) ≈

Nθ∑
i=1

bi (α, t)Φθi (x, t)

I the sampling required to build this basis consists of snapshots

corresponding to one or more values of the parameter α.
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

ROM associated to the anisothermal Navier-Stokes equations

introduction of the POD decompositions in the Navier-Stokes equ.

I conservation of momentum equation

Nu∑
j=1

Φu
j

daj

dt
+

Nu∑
j=1

aj (∇ū.Φu
j +∇Φu

j .ū −
1

Re
∇2Φu

j )

+

Nu∑
j=1

Nu∑
k=1

aj ak∇Φu
j .Φ

u
k + Ri

Nθ∑
j=1

bj Φ
θ
j ey = f′(ū, p, θ̄) + Ru

I energy conservation equation

Nθ∑
j=1

Φθj
dbj

dt
+

Nθ∑
j=1

bj (ū.∇)Φθj −
Nθ∑
j=1

bj
1

RePr
∇2Φθj

+

Nu∑
j=1

Nθ∑
k=1

aj bk (Φu
j .∇)Φθk +

Nu∑
j=1

aj (Φu
j .∇)θ̄ = g′(ū, θ̄) + Rθ
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

ROM associated to the anisothermal Navier-Stokes equations

Galerkin projection :
〈
Φu

i ,Ru

〉
= 0 and

〈
Φθi ,Rθ

〉
= 0

the reduced order model is written as

dai

dt
=

Nu∑
j=1

Nu∑
k=1

Cijk aj ak +

Nu∑
j=1

(
Dij (α) + Aij

)
aj +

Nθ∑
j=1

Bij bj + Ei1(α) + Ei2 for i = 1, ...,Nu

dbi

dt
=

Nu∑
j=1

Nθ∑
k=1

Cθijk aj bk +

Nu∑
j=1

(
Dθ

ij (α) + Aθij

)
aj +

Nθ∑
j=1

Bθij aj + Eθi1(α) for i = 1, ...,Nθ

avec

Cijk = −(Φu
n,∇Φu

m.Φ
u
k) Dij (α) = (Φu

n,−∇ū.Φu
m −∇Φu

m.ū) Aij = (Φu
n,

1

Re
∇2Φu

m)

Bij = (Φu
n,Φθi ey) Ei1(α) = (Φu

n,−∇p̄ +
1

Re
∇2ū −∇ū.ū) Ei2 = −

∫
Γ

p′Φu
n.ndΓ

Cθijk = −(Φθn , (Φu
i .∇)Φθk ) Dθij (α) = (Φθn , (ū.∇)Φθm) Aθij = (Φθn ,

1

RePr
∇2Φθm)

Bθij = (Φθn , (Φu
m.∇)θ̄) Eθi1(α) = (Φθn ,

1

RePr
∇2
θ̄ − (ū.∇)θ̄)

I coefficients dependent on α (via ū ) are determined using a Lagrange

interpolation of ū
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Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

ROM associated to the anisothermal Navier-Stokes equations

Galerkin projection :
〈
Φu

i ,Ru

〉
= 0 and

〈
Φθi ,Rθ

〉
= 0

the reduced order model is written as

dai

dt
=

Nu∑
j=1

Nu∑
k=1

Cijk aj ak +

Nu∑
j=1

(
Dij (α) + Aij

)
aj +

Nθ∑
j=1

Bij bj + Ei1(α) + Ei2 for i = 1, ...,Nu

dbi

dt
=

Nu∑
j=1

Nθ∑
k=1

Cθijk aj bk +

Nu∑
j=1

(
Dθ

ij (α) + Aθij

)
aj +

Nθ∑
j=1

Bθij aj + Eθi1(α) for i = 1, ...,Nθ

I system of ODE of low order Nu + Nθ ⇒ fast resolution

I since the divergence of the POD modes is null, if the POD modes

are null on the boundaries, the pressure disappears of the ROM

I if it is not the case POD is also applied to the pressure and a ROM

that gives the temporal evol. of p and u is construct

Tallet et al, A minimum residual projection to build coupled velocity-pressure POD-ROM

for incomp. NS equations, Comm. in Nonlinear Science and Num. Simulation, vol 22, 2015.
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Formulation of the reduced optimal control problem

POD is applied to the target temperature θ̂

θ̂(x, t, γ̂) ≈ θ(x) +

N
θ̂∑

j=1

b̂j (t)Φθ̂
j (x)

the reduced optimal control is written :

Search the control parameter γ and the state variables

a = (a1, . . . , aNu ) and b = (b1, . . . , bNθ ) such that the functional

Jred (b,γ) =
1

2

∫ T

0

Nθ∑
k=1

b2
k +

Nû∑
l=1

b̂2
l −

Nu∑
k=1

Nû∑
l=1

Ckl bk b̂l

 dt

+

Nu∑
k=1

b2
k (T ) +

Nû∑
l=1

b̂2
l (T ) +

Nu∑
k=1

Nû∑
l=1

Ckl bk (T )b̂l (T ) +
κ

2
|γ|2.

with Ckl =
〈
Φθk ,Φ

θ̂
l

〉
is minimized under the constraints of the previous ROMs denoted

Mj (a, b,γ) and Nj (a, b,γ)

this pb is converted into an unconstrained optimization pb by the

method of Lagrange multipliers
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Resolution by an iterative descent method

a) initialization of the algorithm :k = 0 et γ(k) = γinit

b) solving the state ROM

M(a, b,γ(k)) = 0 and N (a, b,γ(k)) = 0 → a(k) and b(k)

c) solving the adjoint ROM

P(a, b, ζ, ξ, α(k)) = 0, Q(a, b, ζ, ξ, α(k)) = 0 → ζ(k) and ξ(k)

d) assessment of the descent dir. → d(k) = −∇γJred (a, b, , ζ, ξ,γ(k))

e) assessment of the step ω(k) in the descent direction d (k)

(linear search algorithm of Armijo)

f) update the control parameter → γ(k+1) = γ(k) + ω(k)d (k)

g) convergence criterion : if ‖Jred (a,γ(k+1))‖ > ε, return to step b)

I fast to solve and small storage capacity is required
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Application : 2D lid driven heated square cavity

square cavity of side H

106 ≤ Gr ≤ 5× 106

158 ≤ Re ≤ 474

uniform grid with 1002 cells

transient regime

EDF finite-volume code : Saturne

Tallet, Allery, Leblond Optimal flow control using a POD based Reduced-Order Model, Numerical Heat

Transfer, Part B, vol 70, 2016.

Objective

controlling the temperature inside the cavity by varying the control

parameters γ1 and γ2 defined by

u|Γtop = γ1 U0 ex and θ|Γleft
= γ2 θc
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Streamlines for Re = 316 and Gr = 106

a) t = 3 b) t = 5 c) t = 15

Isovalues of temperature for Re = 316 and Gr = 106

a) t = 3 b) t = 5 c) t = 15
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Construction of the POD basis

the snapshots are obtained from 6 simulations at various Reynolds

numbers (158 ≤ Re ≤ 474) and various Grashof numbers

106 ≤ Re ≤ 5.106 :

Reynolds number Re Grashof Gr

158
1.106

5.106

316
1.106

5.106

474
1.106

5.106

for each couple Re-Gr, 150 snapshots evenly distributed on the

transient regime are considered
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Control

we want to achieve a target temp. θ̂ corresponding to a couple

Retarg-Grtarg by starting from a temp. θinit corresponding to Reinit-Grinit

four target pairs of Re-Gr that do not belong to the sampling are

considered

1) Re = 221 ; Gr = 2.106 2) Re = 221 ; Gr = 4.106

3) Re = 379 ; Gr = 2.106 4) Re = 379 ; Gr = 4.106

algorithm convergence
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Control

error (averaged in time) between the results of the full model and

those obtained with the reduced control algorithm

Reynolds Grashof Temperature Velocity

number number error error

221 2.106 5,15 % 11,7 %

221 4.106 4,74 % 13,8 %

379 2.106 5,78 % 10,8 %

379 4.106 5,47 % 13,6 %

I acceptable error : about 5% for the temperature and 11-13% for the

velocity, whatever the considered target

I the optimization algorithm performs quite well

Computing time necessary for the control procedure

I reduced model : about 2-3 minute with 1 proc.

I full model : estimated to be several days with 12 proc.
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Control

error (averaged in time) between the results of the full model and

those obtained with the reduced control algorithm

Reynolds Grashof Temperature Velocity

number number error error

221 2.106 5,15 % 11,7 %

221 4.106 4,74 % 13,8 %

379 2.106 5,78 % 10,8 %

379 4.106 5,47 % 13,6 %

I acceptable error : about 5% for the temperature and 11-13% for the

velocity, whatever the considered target

I the optimization algorithm performs quite well

Computing time necessary for the control procedure

I reduced model : about 2-3 minute with 1 proc.

I full model : estimated to be several days with 12 proc.
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Summary

control algorithm is fast (about one minute) and accurate

however, reduced order models are again too expensive in storage

requirements

Nb of kept POD

modes

ROMs

coefficients
POD modes Mean fields In all

10 11,7 Ko 9,54 Mo 10,7 Mo 20,2 Mo

20 23,4 Ko 19,1 Mo 21,4 Mo 40,5 Mo

30 35,2 Ko 28,6 Mo 32,1 Mo 60,7 Mo

controllers : limited in storage and in computing power

development of another control strategy

I requiring less storage and less computation

I in return, no ”temporal dynamic” ⇒ mean fields
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Summary

control algorithm is fast (about one minute) and accurate

however, reduced order models are again too expensive in storage

requirements

Nb of kept POD

modes

ROMs

coefficients
POD modes Mean fields In all

10 11,7 Ko 9,54 Mo 10,7 Mo 20,2 Mo

20 23,4 Ko 19,1 Mo 21,4 Mo 40,5 Mo

30 35,2 Ko 28,6 Mo 32,1 Mo 60,7 Mo

controllers : limited in storage and in computing power

development of another control strategy

I requiring less storage and less computation

I in return, no ”temporal dynamic” ⇒ mean fields
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Goal

Control the temperature θzone in the occupied zone, which depends on the

building thermal load P (solar gains, occupant gains. . . ) in the room, by

modifying the injected air flow rate Qv

Principle of actual controllers

Temperature measurement with sensors

located usually close to the walls

While the temperature measured by the

sensors, θsensor, is different from the

desired temperature θtarget, the injected

air flow rate Qv is modified

but, the temperature θzone in the occupied

zone is unknown and different

θcapt

Q
v
,θ

in

capt
θ

zone d’occupation

charge thermique : P
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Goal

Control the temperature θzone in the occupied zone, which depends on the

building thermal load P (solar gains, occupant gains. . . ) in the room, by

modifying the injected air flow rate Qv

Principle of actual controllers

Temperature measurement with sensors

located usually close to the walls

While the temperature measured by the

sensors, θsensor, is different from the

desired temperature θtarget, the injected

air flow rate Qv is modified

but, the temperature θzone in the occupied

zone is unknown and different

θcapt

Q
v
,θ

in

capt
θ

zone d’occupation

charge thermique : P

Idea

I Obtain the temperature (and even the velocity) in the occupied zone with POD

I Add two more steps in the controller program
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Offline procedure

• The database is built :

X with flow simulations obtained for several

Qdata
v and several thermal loads Pdata

Database

construction

u(Qdata
v ,Pdata, x)

θ(Qdata
v ,Pdata, x)

Field decompo-

sition by POD

ah(Qdata
v ,Pdata) ;

Φh(xocc) ; Φh(xsensor)

Temperature

measurement

with sensors

θsensor(xsensor,P,Qv )

Estimation of heat load

with optimiza-

tion algorithm

P

Estimation

of temperature in

the occupied zone

θzone(Qv ,P, xocc)

Is the

convergence

criterium ok ?

End

Modification of the

inlet airflow rate

‖θtarget−θ̄zone‖ <ε

‖ =θtarget−θ̄zone‖ <ε



Offline procedure

• The database is built :

X with flow simulations obtained for several

Qdata
v and several thermal loads Pdata

• POD decomposition applied to the velocity
and temperature fields :

u(Qdata
v ,Pdata, x) =

Nu∑
i=1

au
i (Qdata

v ,Pdata) Φu
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Nθ∑
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Offline procedure

• The database is built :

X with flow simulations obtained for several

Qdata
v and several thermal loads Pdata

• POD decomposition applied to the velocity
and temperature fields :

u(Qdata
v ,Pdata, x) =

Nu∑
i=1

au
i (Qdata

v ,Pdata) Φu
i (x)

θ(Qdata
v ,Pdata, x) =

Nθ∑
i=1

aθi (Qdata
v ,Pdata) Φθi (x)

⇒ Computationaly expensive step, but it is

done before the control loop

⇒ The following variables only are embedded

in the sensor :

- au(Qdata
v ,Pdata) ; Φu(xocc) ; Φu(xsensor)

- aθ(Qdata
v ,Pdata) ; Φθ(xocc) ; Φθ(xsensor)

Database

construction

u(Qdata
v ,Pdata, x)

θ(Qdata
v ,Pdata, x)

Field decompo-

sition by POD

ah(Qdata
v ,Pdata) ;

Φh(xocc) ; Φh(xsensor)

Temperature

measurement

with sensors

θsensor(xsensor,P,Qv )

Estimation of heat load

with optimiza-

tion algorithm

P

Estimation

of temperature in

the occupied zone

θzone(Qv ,P, xocc)

Is the

convergence

criterium ok ?

End

Modification of the

inlet airflow rate

‖θtarget−θ̄zone‖ <ε

‖ =θtarget−θ̄zone‖ <ε



Online procedure

• Temperature measurement with the

sensors (close to the walls) : θsensor()

Database

construction

u(Qdata
v ,Pdata, x)

θ(Qdata
v ,Pdata, x)

Field decompo-

sition by POD

ah(Qdata
v ,Pdata) ;

Φh(xocc) ; Φh(xsensor)

Temperature

measurement

with sensors

θsensor(xsensor,P,Qv )

Estimation of heat load

with optimiza-

tion algorithm

P

Estimation

of temperature in

the occupied zone

θzone(Qv ,P, xocc)

Is the

convergence

criterium ok ?

End

Modification of the

inlet airflow rate

‖θtarget−θ̄zone‖ <ε

‖ =θtarget−θ̄zone‖ <ε



Online procedure

• Temperature measurement with the sen-

sors (close to the walls) : θsensor()

• The heat load P is estimated by solving

the optimization problem :

min
P
J (P,Qv , xsensor)

where the cost functional J is :

J =
1

2

M∑
j=1

θsensor(xsensor,j )−
Nθ∑
i=1

aθi (Qv ,P) Φθi (xsensor,j )︸ ︷︷ ︸
=θPOD (Qv ,P,xsensor,j )



2

M : number of sensors

Database

construction

u(Qdata
v ,Pdata, x)

θ(Qdata
v ,Pdata, x)

Field decompo-

sition by POD

ah(Qdata
v ,Pdata) ;

Φh(xocc) ; Φh(xsensor)

Temperature

measurement

with sensors

θsensor(xsensor,P,Qv )

Estimation of heat load

with optimiza-

tion algorithm

P

Estimation

of temperature in

the occupied zone

θzone(Qv ,P, xocc)

Is the

convergence

criterium ok ?

End

Modification of the

inlet airflow rate

‖θtarget−θ̄zone‖ <ε

‖ =θtarget−θ̄zone‖ <ε



Online procedure

• Temperature assessment in the control

zone θzone :

θzone(xocc) =

Nθ∑
i=1

aθi (Qv ,P) Φθi (xocc)

Remark : The velocity in the control zone uocc

can be calculated :

uocc(xocc) =

Nθ∑
i=1

au
i (Qv ,P) Φu

i (xocc)

Database

construction

u(Qdata
v ,Pdata, x)

θ(Qdata
v ,Pdata, x)

Field decompo-

sition by POD

ah(Qdata
v ,Pdata) ;

Φh(xocc) ; Φh(xsensor)

Temperature

measurement

with sensors

θsensor(xsensor,P,Qv )

Estimation of heat load

with optimiza-

tion algorithm

P

Estimation

of temperature in

the occupied zone

θzone(Qv ,P, xocc)

Is the

convergence

criterium ok ?

End

Modification of the

inlet airflow rate

‖θtarget−θ̄zone‖ <ε

‖ =θtarget−θ̄zone‖ <ε



Online procedure

• Convergence criterium :

While ‖θtarget − θ̄zone‖ < ε, the inlet

airflow rate Qv is modified

Database

construction

u(Qdata
v ,Pdata, x)

θ(Qdata
v ,Pdata, x)

Field decompo-

sition by POD

ah(Qdata
v ,Pdata) ;

Φh(xocc) ; Φh(xsensor)

Temperature

measurement

with sensors

θsensor(xsensor,P,Qv )

Estimation of heat load

with optimiza-

tion algorithm

P

Estimation

of temperature in

the occupied zone

θzone(Qv ,P, xocc)

Is the

convergence

criterium ok ?

End

Modification of the

inlet airflow rate

‖θtarget−θ̄zone‖ <ε

‖ =θtarget−θ̄zone‖ <ε



Two steps are added in the controller

program

⇓

Validation of these two steps

Tallet, Allery, Allard, POD approach to determine in

real-time the temperature distribution in a cavity,

Building and Environment, vol. 93(2), 2015.

Database

construction

u(Qdata
v ,Pdata, x)

θ(Qdata
v ,Pdata, x)

Field decompo-

sition by POD

ah(Qdata
v ,Pdata) ;

Φh(xocc) ; Φh(xsensor)

Temperature

measurement

with sensors

θsensor(xsensor,P,Qv )

Estimation of heat load

with optimiza-

tion algorithm

P

Estimation

of temperature in

the occupied zone

θzone(Qv ,P, xocc)

Is the

convergence

criterium ok ?

End

Modification of the

inlet airflow rate

‖θtarget−θ̄zone‖ <ε

‖ =θtarget−θ̄zone‖ <ε



Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

3D flow in an office

Geometry (l=2.7m, H=2.85m, L=7.2m)

1

2

3

4

5

6 9

8

7

12

11

10

15

14

13

L

l

x

y

Hypotheses :

I incompressible and non isothermal flow

I Boussinesq hypothesis

I uniform heat load in the domain

I initial temperature in the whole room 26o C
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

3D flow in an office

Geometry (l=2.7m, H=2.85m, L=7.2m)

1

2

3

4

5

6 9

8

7

12

11

10

15

14

13

L

l

x

y

Initial and boundary conditions :

I walls : constant temperature 26o C

I outlet : homogeneous Neuman with zero heat flux

I inlet : imposed temperature and velocity

I initial temperature in the whole room 26o C
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

3D flow in an office

Geometry (l=2.7m, H=2.85m, L=7.2m)

1

2

3

4
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6 9

8

7

12

11

10

15

14

13

L

l

x

y

Models and grids :

I Saturne, 500000 nodes

I Steady turbulence k − epsilon model

? ? ?

I initial temperature in the whole room 26o C
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

3D flow in an office

Geometry (l=2.7m, H=2.85m, L=7.2m)
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14

13

L

l

x

y

position of the sensors :

I one close to the switch (x/l=0.23, y/L=0.004, z/h=0.49)

I one at the outlet

? ? ?

I initial temperature in the whole room 26o C
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

3D flow in an office

Geometry (l=2.7m, H=2.85m, L=7.2m)

1
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6 9
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12
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15

14

13

L

l

x

y

occupied zone : 
0.37 ≤

xocc

l
≤ 0.74

0.41 ≤
yocc

L
≤ 0.55

0.53 ≤
zocc

h
≤ 0.70
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Construction of the database

5 airflow rates (215m3/h ≤ Qv ≤ 590m3/h), 5 thermal loads

(19W /m3 ≤ P ≤ 39.7W /m3 )
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Isovalues of temperature and velocity along the inlet plane (case 1

– cold air injection, P = 39.7W /m3 )
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Results
2 POD modes are kept :

u(Qv ,P, x) =
2∑

i=1

au
i (Qv ,P) Φu

i (x) et θ(Qv ,P, x) =
2∑

i=1

aθi (Qv ,P) Φθi (x)

average temperature in the occupied zone

reference

θ̄zone

computed

θ̄zone

Case 1 (Qv3 , P = 35.2) 27.8 27.7

Case 2 (Qv2 , P = 28.3) 27.5 27.2

Case 3 (Qv1 , P = 33.4) 28.9 29.1

Case 4 (Qv5 , P = 21.6) 25.2 25.2

Case 5 (Qv4 , P = 20) 25.7 25.7
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Results
2 POD modes are kept :

u(Qv ,P, x) =
2∑

i=1

au
i (Qv ,P) Φu

i (x) et θ(Qv ,P, x) =
2∑

i=1

aθi (Qv ,P) Φθi (x)

average temperature in the occupied zone

reference

θ̄zone

computed

θ̄zone

Case 1 (Qv3 , P = 35.2) 27.8 27.7

Case 2 (Qv2 , P = 28.3) 27.5 27.2

Case 3 (Qv1 , P = 33.4) 29 29.1

Case 4 (Qv5 , P = 21.6) 25.2 25.2

Case 5 (Qv4 , P = 20) 25.7 25.7
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Results
2 POD modes are kept :

u(Qv ,P, x) =
2∑

i=1

au
i (Qv ,P) Φu

i (x) et θ(Qv ,P, x) =
2∑

i=1

aθi (Qv ,P) Φθi (x)

average velocity in the occupied zone

reference

‖u‖zone

computed

‖u‖zone

Case 1 (Qv3 , P = 35.2) 0.44 0.39

Case 2 (Qv2 , P = 28.3) 0.40 0.35

Case 3 (Qv1 , P = 33.4) 0.38 0.34

Case 4 (Qv5 , P = 21.6) 0.57 0.55

Case 5 (Qv4 , P = 20) 0.45 0.43
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Position of the reference points for 3 heights Hi

1
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L

l

x

y

Temperature and velocity at the reference points – Case 3

0 2 4 6 8 10 12 14 16
Numero du point

28.0

28.5

29.0

29.5
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30.5
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m

pe
ra

tu
re
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H1– Obtenue
H2– Reference
H2– Obtenue
H3– Reference
H3– Obtenue

0 2 4 6 8 10 12 14 16
Numero du point

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
or

m
e

de
la

vi
te

ss
e

H1– Reference
H1– Obtenue
H2– Reference
H2– Obtenue
H3– Reference
H3– Obtenue
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Temperature and velocity at the reference points – Case 4

0 2 4 6 8 10 12 14 16
Numero du point

24.0
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25.0
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26.5
Te

m
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Temperature and velocity at the reference points – Case 5

0 2 4 6 8 10 12 14 16
Numero du point
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H2– Obtenue
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Numero du point
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N
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m
e

de
la

vi
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H1– Obtenue
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H3– Reference
H3– Obtenue
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Reduced optimal control problem

Anisothermal flow control by using MPS method

Towards control in buildings

Conclusions

development of another control strategy that can be
embedded in the actual controllers

I requiring less storage and less computation but no ”temporal

dynamic” (mean fields)

I prediction of temperature and velocity in the occupied zone

with a good accuracy

I algorithm very fast < 5s
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Solution 1 : Multiple Parametrized Snapshots method (MPS)

a POD basis is generated from snapshots associated to n different

values of control parameters (see first part of the talk)

Solution 2 : Interpolation on the Tangent Subspace of the

Grassmann manifold (ITSGM)

to construct a bunch of POD basis corresponding to different

control parameters (γ̃1, . . . , γ̃n)

to interpolate them to obtain a basis valid for the parameter γalgo

imposed by the control algorithm

I Lagrange or Radial Basis Function (RBF) interpolations do not

necessarily produce a basis

I to ensure this property we will use a powerful interpolation method

based on the calculation of geodesics in the Grassmann manifold
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces
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Principle of ITSGM

let ψ ∈ RNx×m denote the full-rank column matrix, whose columns

provide a POD basis of a dimension m of the subspace S of RNx

the set of all these m dimensional subspaces S form what we call a

Grassmann manifold G(m,Nx )

I at each point S of the Grassmann manifold G there exists a tangent

space TS of the same dimension, with origin the point of tangency

I the tangent space TS is a vector space

I TS is a flat space in which interpolations can be performed as usual
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Principle of ITSGM

let ψ ∈ RNx×m denote the full-rank column matrix, whose columns

provide a POD basis of a dimension m of the subspace S of RNx

the set of all these m dimensional subspaces S form what we call a

Grassmann manifold G(m,Nx )

I at each point S of the Grassmann manifold G there exists a tangent

space TS of the same dimension, with origin the point of tangency

I the tangent space TS is a vector space

I TS is a flat space in which interpolations can be performed as usual
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Practical algorithm of basis adaptation on the Grassmann manifold

Amsallem and Farhat, An Interpolation Method for Adapting Reduced-Order Models and Application to

Aeroelasticity, AIAA Journal, 2008.
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Practical algorithm of basis adaptation on the Grassmann manifold

Amsallem and Farhat, An Interpolation Method for Adapting Reduced-Order Models and Application to

Aeroelasticity, AIAA Journal, 2008.

1) choose a reference point Si0 to be the

origin point of the interp.
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Practical algorithm of basis adaptation on the Grassmann manifold

Amsallem and Farhat, An Interpolation Method for Adapting Reduced-Order Models and Application to

Aeroelasticity, AIAA Journal, 2008.

2) map each Si to a matrix Γi represen-

ting a point χi of TSi0
with logarithm

application LogSi0

(I − ψi0ψ
T
i0

)ψi (ψ
T
i0
ψi )
−1 = Ui Σi V

T
i

and Γi = Ui tan−1(Σi )V T
i
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Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method
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Practical algorithm of basis adaptation on the Grassmann manifold

Amsallem and Farhat, An Interpolation Method for Adapting Reduced-Order Models and Application to

Aeroelasticity, AIAA Journal, 2008.

3) compute Γc associated to the control

parameter γc by using usual interpola-

tion method
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Practical algorithm of basis adaptation on the Grassmann manifold

Amsallem and Farhat, An Interpolation Method for Adapting Reduced-Order Models and Application to

Aeroelasticity, AIAA Journal, 2008.

4) map Γc to a subspace Sc spanned by

a matrix ψc with exponential application

ExpSi0
:

Γc = Uc Σc V T
c

and ψc = ψi0 Vc cos(Σc ) + Uc sin(Σc )
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Solution 3 : Proper Generalized Decomposition (PGD)

the PGD is used here like a space-time enrichment approach

consider a velocity and a pressure POD bases associated to a value

γ1 of the control parameter :

uγ1 (x , t) '
mu∑
j=1

aj (t)Φu
j (x) and pγ1 (t, x) '

mp∑
j=1

bj (t)Φpj (x)

I these approx. are not valid for another value γ2

the previous bases are enriched in the following way

uγ2 ' uγ1 + a(t)Φu(x) and pγ2 ' pγ1 + b(t)Φp (x)

I introduction into the Navier-Stokes equations :



∇ ·Φu = 0

Φu da

dt
+ a2

Φ
u · ∇Φ

u + a

(
uγ1
· ∇Φ

u + Φ
u · ∇uγ1

−
∆Φu

Re

)
+ b∇Φp = G(uγ1

, pγ1
) + Ru

Φu = 0 sur Γ× I et uγ1
+ aΦu = u0 in Ω.
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Brief description of the Proper Generalized Decomposition (PGD)

double Galerkin orthogonality

I if {a, b} are known and fixed, we search

{Φu,Φp} = S(a, b)

S corresponds to the Galerkin projection of N.S equations onto temporal coefficients a and b

I if {Φu,Φp} are known and fixed, we seek

{a, b} = T (Φu,Φp )

T corresponds to the Galerkin projection of N.S equations onto Φu and ∇Φp

I {a,Φu} and {b,Φp} are optimal if they satisfy simultaneously

the previous equations

I theses equations are solved with a classical fixed point

algorithm
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Reduced optimal control with POD bases update

a) initialization of the algorithm :k = 0 et γ(k) = γinit

b) update the bases by using PGD or ITSGM

c) update the spatial coeff. of the state and adjoint ROMs

d) solving the state ROM M(a,γ(k)) = 0 → a

e) solving the adjoint ROM P(a, ξ,γ(k)) = 0 → β.

f) assessment of the descent direction → d(k) = −∇γJred (a,β,γ(k))

g) assessment of the step ω(k) in the descent direction d (k)

(linear search algorithm of Armijo)

f) update the control parameter → γ(k+1) = γ(k) + ω(k)d (k)

h) convergence criterion : if ‖Jred (a,γ(k+1))‖ > ε, return to step b)
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Application : 2D lid driven submitted to body forces

two external forces f0 and f1 :

f0 = γ0exp(−t)χΩ0 (e1 + e2)

and f1 = γ1χΩ1 (e1 + e2)

temporal domain I = [0, 1]

at t=0, the fluid is at rest

finite element code : Fenics

Taylor Hood P2/P1, non

uniform grid, 17728 triangles

Oulghelou, Allery : A fast and robust sub-optimal control approach using reduced order model adaptation

techniques, Applied Mathematics and Computation, vol 333, 2018.

Objective

γ = (γ0, γ1) are the control parameters

starting from the flow associated to γinit = (γ0
init , γ

1
init), we want to

obtain the param. γ̂ = (γ̂0, γ̂1) corresponding to the target flow û.
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Streamlines for the initial flow γinit = (γ0
init , γ

1
init) = (1,−1)

a) at t=T/2 b) at t=T

Streamlines for the target flow γ̂ = (γ̂0, γ̂1) = (0, 0)

a) at t=T/2 b) at t=T
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Construction of the POD bases

parameters γ = (γ0, γ1) used to build the sampling POD bases

I this sampling is not necessary for the PGD approach

POD basis is built with 400 snap. evenly distributed on the time

the dimension of each POD basis is 10

for MPS method, all snapshots associated at all operating points

are used to generate the POD basis
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

CPU time and % error at the end of the control algorithm

Method Ronline Roffline+online % error

full 1 1 0.01%

MPS 2972 20.3 3.69%

PGD 146 146 3.81%

ITSGM 1400 20.1 2.12%

- percentage error : ε =

∫ T

0
ε̂dt where ε̂ = 100×

||û − u||
L2(Ω)

||û||
L2(Ω)

- CPU time ratio : R = Tfull/Tmethod

I ITSGM gives more accurate results

I the online gain is important for MPS and ITSGM

I if the offline time (associated to the construction of POD

basis) is considered, the PGD becomes more advantageous
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||û − u||
L2(Ω)

||û||
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Basis interpolation by using the Grassmann manifold properties

Basis enrichment by using PGD method

Flow control in 2D lid driven cavity submitted to body forces

Conclusion of this part

simulations in a few minutes with proper accuracy

fast simulations, but not in real time (due to ROM

construction for each new parameter value)

we propose a faster method based directly on the

interpolation of solutions previously compressed by POD
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Bi-CITSGM Method

consider the set of parameterized snapshot matrices :

S(θi ) = {y1(θi ), . . . , yNs (θi )} ∈ RNx×Ns where i = 1, . . . ,Np

I yj (θi ) is the sol. at time tj of a parameterized physical pb

goal : approximate S(θ̃) for θ̃ 6= θi , without resorting to the full

model

standard polynomial interpolation methods

I effective for pbs with a linear behaviour

I ineffective for pbs with a non-linear behaviour

proposed approach : Bi-CITSGM (Hyper Bi-Calibrated Interpolation on the Tangent

Space of the Grassmann Manifold)

I ITSGM interpolation

I solving a constrained optimization problem
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Bi-CITSGM Method

consider the set of parameterized snapshot matrices :

S(θi ) = {y1(θi ), . . . , yNs (θi )} ∈ RNx×Ns where i = 1, . . . ,Np

I yj (θi ) is the sol. at time tj of a parameterized physical pb

goal : approximate S(θ̃) for θ̃ 6= θi , without resorting to the full

model

standard polynomial interpolation methods

I effective for pbs with a linear behaviour

I ineffective for pbs with a non-linear behaviour

proposed approach : Bi-CITSGM (Hyper Bi-Calibrated Interpolation on the Tangent

Space of the Grassmann Manifold)

I ITSGM interpolation

I solving a constrained optimization problem
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Bi-CITSGM Method – ”Offline” Steps

For each param. θi , the snapshot matrices are decomposed using POD

S(θi ) ≈ Ui ΣiV T
i

spatial basis

size Nx × q

singular values

size q × q

temporal basis

size Ns × q

Bi-CITSGM Method – ”Online” Steps

interpolate the singular values (RBF, Lagrange, spline, etc.) and

obtain Σ̃

interpolate the singular vector matrices by ITSGM [U1], . . . , [UNp ]

and obtain [Ũ]

interpolate the singular vector matrices by ITSGM [V1], . . . , [VNp ]

and obtain [Ṽ ]
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Bi-CITSGM Method – ”Offline” Steps

For each param. θi , the snapshot matrices are decomposed using POD

S(θi ) ≈ Ui ΣiV T
i

spatial basis

size Nx × q

singular values

size q × q

temporal basis

size Ns × q

Bi-CITSGM Method – ”Online” Steps

interpolate the singular values (RBF, Lagrange, spline, etc.) and

obtain Σ̃

interpolate the singular vector matrices by ITSGM [U1], . . . , [UNp ]

and obtain [Ũ]
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Bi-CITSGM Method – ”Online” Steps

the expression S(θ̃)
!

= ŨΣ̃Ṽ T is incorrect ! !

I the modes of Ũ and Ṽ do not follow the order of the singular

values Σ̃

I necessity to introduce orthogonal matrices K and Q such that

S(θ̃) = ŨK Σ̃QT Ṽ T

I K and Q are solutions to constrained optimization problems

I analytical expression of the orthogonal matrices K and Q

M. Oulghelou and C. Allery, Non-intrusive method for parametric model order reduction using a

bi-calibrated interpolation on the Grassmann manifold, Journal of Computational Physics, vol 426, 2021.
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Problem settings

this study focuses on the inverse problem of temperature distribution in a

2D ventilated cavity

I θhot is higher than the

temperature θcold

I the inlet (resp. outlet) is

located at the top left (resp.

bottom right) corner

M. Oulghelou, C. Beghein and C. Allery, A surrogate optimization approach for inverse problems :

Application to turbulent mixed-convection flows, Computers and Fluids, vol 241, 2022.

I the inlet velocity U is set to a constant

I the inlet temperature θ is variable
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Problem settings

the turbulent flow is governed by Navier-Stokes equations of an

incompressible Newtonian fluid with Boussinesq’s assumption :
∇ · v = 0

ρ∂tv + ρv · ∇v = −∇p + µ∆v + ρ g β(Θ−Θ0)ey +∇σt

ρ cp ∂tΘ + ρ cp v · ∇Θ = λ∆Θ +∇qt

I v , Θ, p are velocity, temperature and pressure (obtained with an (URANS)

turbulence model)

I ρ, µ, ,β, Cp , λ are the density, dynamic viscosity, thermal expansion

coefficient, heat capacity and heat conductivity of the fluid at the

reference temperature Θ0

I g is the gravitational acceleration
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Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Optimization problem setting

the aim is to solve the constrained nonlinear optimization problem

min
θ
J (Θ) =

∫ tf

0

∫
Ωint

(Θ− Θ̂)2 dx dt subject to N (Θ, v , θ) = 0

I N denotes the Navier-Stokes equations

I v is the velocity field and Θ the temperature

I the optimization variable θ is the inlet temperature

I Θ̂ is a given temperature distribution

I [0, tf ] is the time frame of simulation

I Ωint is the restricted occupied zone of the spatial domain
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Standard GA approach

I GA consists in starting from a randomly generated set of chromosomes

θ1, θ2, . . . , θN
chrom

, forming a population

I in each population, a fitness value is assigned to each chromosome θj (the fitness

function f is chosen as the inverse of the objective function)

I in order to evolve populations, 3 genetic operators, modeled on the Darwinian

concepts of natural selection and evolution are used
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Reduced optimal flow control with adaptative ROM
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Application to mixed convection inverse problem

Standard GA approach

I the genetic operations are repeated for a predetermined nb of generations

I the best chromosome of the final generation is the global optimized solution
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Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Standard GA approach

I GA needs to perform high fidelity simulations many times for each evolved

population

I the time complexity of GA makes unfeasible their application in near-real time

I to tackle this issue, a reduced interpolation strategy similar to the Bi-CITSGM

Method is used (barycentric interpolation on the quotient manifold, avoid the

calibration phase)
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Validation of the high fidelity computations

the flow, and all input data necessary, are generate with OpenFOAM

I RNG k-epsilon model

I cavity dimensions 1.04× 1.04 m

I Uinlet = 0.57 m/s and vinlet = 0 m/s

I Θhot = 35.5o C on the floor

I Θcold = 15o C on the other walls

I Ra= 2.13× 109 and Re = 654

I inlet temp. varying between 2 and 26o C
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Application to mixed convection inverse problem

Validation of the high fidelity computations

CFD computations were validated with the experiments of Blay et al. (for

an inlet temperature equal to 15o C)

Θ∗ at x∗ = 0.5 Θ∗ at y∗ = 0.5

I a satisfactory agreement can be noticed
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Optimal control based on Galerkin POD Reduced Order Models

Reduced optimal flow control with adaptative ROM

Optimal control based on interpolation of POD reduced solution

Interpolation for nonlinear parametrized data

Application to mixed convection inverse problem

Dynamics of the mixed convection flow

three instants for θinlet = 2o C

I the air falls along the left wall, warmed by the hot floor, and finally lifted by natural convection

three instants for θinlet = 26o C

I the injected air is hot and remains in a large region along the ceiling, it falls afterwards along the

left and right cold walls, and lift up along the heated floor

the training sampling solutions is complex and rich
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Application to mixed convection inverse problem

Application of the surrogate GA to the mixed-convection flow pb

the training injection temp. values belong to the set

Itr = {2, 5, . . . , 23, 26o C}

given a temp. distribution Θ̂, the aim is to apply the surrogate GA to

approximate the associated optimal inlet temp.

I the space of search by surrogate GA is set to

K =
{

(θ, net , nex ,m) ∈ R+ × N3, 2 ≤ θ ≤ 26o C ; 2 ≤ net , nex ≤ 13; 4 ≤ m ≤ q
}

I a population of 20 chromosomes formed by 4 genes randomly

generated in K is used as initial guess to run the surrogate GA.

I different tests are performed for temp. distributions associated to 16

inlet values in the set

Itest = {3, 4, 6, 7, . . . , 24, 25oC}
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Optimal inlet temperature θ

Comparison of inlet temperatures obtained by the GA Percentage of error with respect to the CFD

I the surrogate GA succeeds to recover a good approximation θ̃ of the

sought inlet temperature θ̂

I good accuracy of the reconstructed temperature distribution of less

than 3% of error

I for all the optimization tests, the optimal values of q, nex and net

are within the ranges q ≥ 7, nex ≤ 4 and net ≤ 6
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I the surrogate GA succeeds to recover a good approximation θ̃ of the

sought inlet temperature θ̂

I good accuracy of the reconstructed temperature distribution of less

than 3% of error

I for all the optimization tests, the optimal values of q, nex and net

are within the ranges q ≥ 7, nex ≤ 4 and net ≤ 6
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the surrogate GA predictions for three θinlet = 4, 13, 24oC (that correspond to

three different flow regimes)
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I the cost functional has a good decay behavior

I the recorded percentage of error at the end of the surrogate GA is

nearly less than 4% almost everywhere in the time interval
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Comparison of the high fidelity and surrogate GA for θ̂ = 4oC

High fidelity temperature

Approximate temperature by the surrogate GA

I the surrogate GA succeeded to track the provided target temp. and catch

most of the dynamics features
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